Department of Microbiology and Immunology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, USA.
Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA.
mBio. 2021 Feb 22;13(1):e0296921. doi: 10.1128/mbio.02969-21. Epub 2022 Feb 15.
Clostridioides difficile, an intestinal pathogen and leading cause of nosocomial infection, exhibits extensive phenotypic heterogeneity through phase variation. The signal transduction system CmrRST, which encodes two response regulators (CmrR and CmrT) and a sensor kinase (CmrS), impacts C. difficile cell and colony morphology, surface and swimming motility, biofilm formation, and virulence in an animal model. CmrRST is subject to phase variation through site-specific recombination and reversible inversion of the " switch," and expression of is also regulated by cyclic diguanylate (c-di-GMP) through a riboswitch. The goal of this study was to determine how the switch and c-di-GMP work together to regulate expression. We generated "phase-locked" strains by mutating key residues in the right inverted repeat flanking the switch. Phenotypic characterization of these phase-locked -ON and -OFF strains demonstrates that they cannot switch between rough and smooth colony morphologies, respectively, or other CmrRST-associated phenotypes. Manipulation of c-di-GMP levels in these mutants showed that c-di-GMP promotes expression and associated phenotypes independently of switch orientation. We identified multiple promoters controlling transcription, including one within the ON orientation of the switch and another that is positively autoregulated by CmrR. Overall, this work reveals a complex regulatory network that governs expression and a unique intersection of phase variation and c-di-GMP signaling. These findings suggest that multiple environmental signals impact the production of this signaling transduction system. Clostridioides difficile is a leading cause of hospital-acquired intestinal infections in the United States. The CmrRST signal transduction system controls numerous physiological traits and processes in C. difficile, including cell and colony morphology, motility, biofilm formation, and virulence. Here, we define the complex, multilevel regulation of expression, including stochastic control through phase variation, modulation by the second messenger c-di-GMP, and positive autoregulation by CmrR. The results of this study suggest that multiple, distinct environmental stimuli and selective pressures must be integrated to appropriately control expression.
艰难梭菌是一种肠道病原体,也是导致医院获得性肠道感染的主要原因,它通过表型变异表现出广泛的表型异质性。信号转导系统 CmrRST 编码两个反应调节剂(CmrR 和 CmrT)和一个传感器激酶(CmrS),影响艰难梭菌的细胞和菌落形态、表面和游动运动性、生物膜形成以及动物模型中的毒力。CmrRST 通过位点特异性重组和“开关”的可逆反转发生表型变异,并且 的表达也通过核糖开关受环二鸟苷酸(c-di-GMP)调节。本研究的目的是确定 开关和 c-di-GMP 如何协同工作以调节 的表达。我们通过突变 开关侧翼的右反向重复中的关键残基生成了“相位锁定”菌株。这些相位锁定 -ON 和 -OFF 菌株的表型特征表明,它们不能分别在粗糙和光滑的菌落形态之间切换,或者其他 CmrRST 相关表型。在这些突变体中操纵 c-di-GMP 水平表明,c-di-GMP 独立于 开关方向促进 的表达和相关表型。我们鉴定了控制 转录的多个启动子,包括 开关的 ON 方向内的一个和另一个由 CmrR 正自调控的启动子。总体而言,这项工作揭示了一个复杂的调控网络,该网络控制着 的表达,以及表型变异和 c-di-GMP 信号转导的独特交叉。这些发现表明,多种环境信号影响该信号转导系统的产生。艰难梭菌是美国导致医院获得性肠道感染的主要原因。CmrRST 信号转导系统控制艰难梭菌的许多生理特征和过程,包括细胞和菌落形态、运动性、生物膜形成和毒力。在这里,我们定义了 表达的复杂、多层次调控,包括通过表型变异进行的随机控制、第二信使 c-di-GMP 的调节以及 CmrR 的正自调控。这项研究的结果表明,必须整合多个不同的环境刺激和选择压力,以适当控制 的表达。