Needham Brittany D, Funabashi Masanori, Adame Mark D, Wang Zhuo, Boktor Joseph C, Haney Jillian, Wu Wei-Li, Rabut Claire, Ladinsky Mark S, Hwang Son-Jong, Guo Yumei, Zhu Qiyun, Griffiths Jessica A, Knight Rob, Bjorkman Pamela J, Shapiro Mikhail G, Geschwind Daniel H, Holschneider Daniel P, Fischbach Michael A, Mazmanian Sarkis K
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
Department of Bioengineering and ChEM-H, Stanford University, Stanford, CA, USA.
Nature. 2022 Feb;602(7898):647-653. doi: 10.1038/s41586-022-04396-8. Epub 2022 Feb 14.
Integration of sensory and molecular inputs from the environment shapes animal behaviour. A major site of exposure to environmental molecules is the gastrointestinal tract, in which dietary components are chemically transformed by the microbiota and gut-derived metabolites are disseminated to all organs, including the brain. In mice, the gut microbiota impacts behaviour, modulates neurotransmitter production in the gut and brain, and influences brain development and myelination patterns. The mechanisms that mediate the gut-brain interactions remain poorly defined, although they broadly involve humoral or neuronal connections. We previously reported that the levels of the microbial metabolite 4-ethylphenyl sulfate (4EPS) were increased in a mouse model of atypical neurodevelopment. Here we identified biosynthetic genes from the gut microbiome that mediate the conversion of dietary tyrosine to 4-ethylphenol (4EP), and bioengineered gut bacteria to selectively produce 4EPS in mice. 4EPS entered the brain and was associated with changes in region-specific activity and functional connectivity. Gene expression signatures revealed altered oligodendrocyte function in the brain, and 4EPS impaired oligodendrocyte maturation in mice and decreased oligodendrocyte-neuron interactions in ex vivo brain cultures. Mice colonized with 4EP-producing bacteria exhibited reduced myelination of neuronal axons. Altered myelination dynamics in the brain have been associated with behavioural outcomes. Accordingly, we observed that mice exposed to 4EPS displayed anxiety-like behaviours, and pharmacological treatments that promote oligodendrocyte differentiation prevented the behavioural effects of 4EPS. These findings reveal that a gut-derived molecule influences complex behaviours in mice through effects on oligodendrocyte function and myelin patterning in the brain.
整合来自环境的感官和分子输入塑造了动物行为。胃肠道是接触环境分子的主要部位,其中饮食成分被微生物群进行化学转化,肠道衍生的代谢产物会传播到包括大脑在内的所有器官。在小鼠中,肠道微生物群会影响行为,调节肠道和大脑中的神经递质产生,并影响大脑发育和髓鞘形成模式。尽管介导肠-脑相互作用的机制广泛涉及体液或神经元连接,但其仍未得到明确界定。我们之前报道,在非典型神经发育的小鼠模型中,微生物代谢产物4-乙基苯硫酸酯(4EPS)的水平升高。在这里,我们从肠道微生物组中鉴定出介导饮食酪氨酸转化为4-乙基苯酚(4EP)的生物合成基因,并对肠道细菌进行生物工程改造,使其在小鼠中选择性产生4EPS。4EPS进入大脑,并与区域特异性活动和功能连接的变化相关。基因表达特征揭示了大脑中少突胶质细胞功能的改变,并且4EPS损害了小鼠少突胶质细胞的成熟,并减少了体外脑培养物中少突胶质细胞与神经元的相互作用。用产生4EP的细菌定植的小鼠表现出神经元轴突髓鞘形成减少。大脑中髓鞘形成动力学的改变与行为结果有关。因此,我们观察到暴露于4EPS的小鼠表现出焦虑样行为,促进少突胶质细胞分化的药物治疗可预防4EPS的行为效应。这些发现揭示了一种肠道衍生分子通过影响大脑中少突胶质细胞功能和髓鞘模式来影响小鼠的复杂行为。