Suppr超能文献

通过计算方法和大数据分析探索帕金森病中的蛋白质聚集。

Exploration of Protein Aggregations in Parkinson's Disease Through Computational Approaches and Big Data Analytics.

机构信息

Institute of Molecular Sciences and Bioinformatics, Lahore, Pakistan.

Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.

出版信息

Methods Mol Biol. 2022;2340:449-467. doi: 10.1007/978-1-0716-1546-1_19.

Abstract

Protein aggregation has been implicated in numerous neurodegenerative disorders whose etiologies are poorly understood, and for which there are no effective treatments. Here we show that the computational approaches may help us to better understand the basics of Parkinson's disease (PD). The high-resolution structural, dynamical, and mechanistic insights delivered by computational studies of protein aggregation have a unique potential to enable the rational manipulation of oligomer formation. Additionally, big data and machine learning methods may provide valuable insights to better understand the nature of proteins involved in PD and their aggregative behavior for the betterment of PD treatment.

摘要

蛋白质聚集与许多神经退行性疾病有关,但其病因尚不清楚,也没有有效的治疗方法。在这里,我们表明计算方法可以帮助我们更好地了解帕金森病(PD)的基础知识。通过对蛋白质聚集的计算研究提供的高分辨率结构、动力学和机械洞察力,具有独特的潜力来实现对低聚物形成的合理操纵。此外,大数据和机器学习方法可能为更好地了解与 PD 相关的蛋白质的性质及其聚集行为提供有价值的见解,从而改善 PD 的治疗效果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验