School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.
Nano Lett. 2022 Mar 9;22(5):1922-1928. doi: 10.1021/acs.nanolett.1c04362. Epub 2022 Feb 15.
Although the unconventional π-magnetism at the zigzag edges of graphene holds promise for a wide array of applications, whether and to what degree it plays a role in their chemistry remains poorly understood. Here, we investigate the addition of a hydrogen atom─the simplest yet the most experimentally relevant adsorbate─to zigzag graphene nanoribbons (ZGNRs). We show that the π-magnetism governs the chemistry of ZGNRs, giving rise to a site-dependent reactivity of the carbon atoms and driving the hydrogenation process to the nanoribbon edges. Conversely, the chemisorbed hydrogen atom governs the π-magnetism of ZGNRs, acting as a spin-1/2 paramagnetic center in the otherwise antiferromagnetic ground state and spin-polarizing the charge carriers at the band extrema. Our findings establish a comprehensive picture of the peculiar interplay between chemistry and magnetism that emerges at the zigzag edges of graphene.
尽管石墨烯锯齿边缘的非常规π磁体在广泛的应用中具有广阔的前景,但它在化学性质中是否以及在何种程度上起作用仍知之甚少。在这里,我们研究了向锯齿型石墨烯纳米带(ZGNR)中添加氢原子——最简单但最具实验相关性的吸附物。我们表明,π磁体控制了 ZGNR 的化学性质,导致碳原子的反应性具有位置依赖性,并驱动氢化过程到达纳米带边缘。相反,化学吸附的氢原子控制了 ZGNR 的π磁体,在原本反铁磁基态中充当自旋 1/2 顺磁中心,并使能带极值处的电荷载流子发生自旋极化。我们的发现确立了石墨烯锯齿边缘出现的化学性质和磁性之间奇特相互作用的综合图景。