Suppr超能文献

含单双激发的五次标度秩约化耦合簇理论

Quintic-scaling rank-reduced coupled cluster theory with single and double excitations.

作者信息

Lesiuk Michał

机构信息

Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.

出版信息

J Chem Phys. 2022 Feb 14;156(6):064103. doi: 10.1063/5.0071916.

Abstract

We consider the rank-reduced coupled-cluster theory with single and double (RR-CCSD) excitations introduced recently [Parrish et al., J. Chem. Phys. 150, 164118 (2019)]. The main feature of this method is the decomposed form of doubly excited amplitudes, which are expanded in the basis of largest magnitude eigenvectors of MP2 or MP3 amplitudes. This approach enables a substantial compression of amplitudes with only minor loss of accuracy. However, the formal scaling of the computational costs with the system size (N) is unaffected in comparison with the conventional CCSD theory (∝N) due to the presence of some terms quadratic in amplitudes, which do not naturally factorize to a simpler form even within the rank-reduced framework. We show how to solve this problem, exploiting the fact that their effective rank increases only linearly with the system size. We provide a systematic way to approximate the problematic terms using the singular value decomposition and reduce the scaling of the RR-CCSD iterations down to the level of N. This is combined with an iterative method of finding dominant eigenpairs of MP2 or MP3 amplitudes, which eliminates the necessity to perform the complete diagonalization, making the cost of this step proportional to the fifth power of the system size, as well. Next, we consider the evaluation of perturbative corrections to CCSD energies resulting from triply excited configurations. The triply excited amplitudes present in the CCSD(T) method are decomposed to the Tucker-3 format using the higher-order orthogonal iteration procedure. This enables us to compute the energy correction due to triple excitations non-iteratively with N cost. The accuracy of the resulting rank-reduced CCSD(T) method is studied for both total and relative correlation energies of a diverse set of molecules. Accuracy levels better than 99.9% can be achieved with a substantial reduction of the computational costs. Concerning the computational timings, the break-even point between the rank-reduced and conventional CCSD implementations occurs for systems with about 30-40 active electrons.

摘要

我们考虑最近提出的具有单双激发的秩约化耦合簇理论(RR - CCSD)[帕里什等人,《化学物理杂志》150, 164118 (2019)]。该方法的主要特点是双激发振幅的分解形式,它是在MP2或MP3振幅的最大模本征向量的基上展开的。这种方法能够在仅轻微损失精度的情况下大幅压缩振幅。然而,与传统CCSD理论(∝N)相比,由于存在一些振幅的二次项,计算成本随系统大小(N)的形式缩放不受影响,即使在秩约化框架内,这些项也不会自然分解为更简单的形式。我们展示了如何利用它们的有效秩仅随系统大小线性增加这一事实来解决这个问题。我们提供了一种系统的方法,使用奇异值分解来近似有问题的项,并将RR - CCSD迭代的缩放降低到N的水平。这与一种寻找MP2或MP3振幅的主导本征对的迭代方法相结合,该方法消除了进行完全对角化的必要性,使得这一步的成本也与系统大小的五次方成正比。接下来,我们考虑对由三激发构型引起的CCSD能量的微扰校正的评估。CCSD(T)方法中存在的三激发振幅使用高阶正交迭代过程分解为Tucker - 3格式。这使我们能够以N的成本非迭代地计算由于三激发引起的能量校正。对于各种分子的总相关能和相对相关能,研究了所得秩约化CCSD(T)方法的精度。在大幅降低计算成本的情况下,可以实现优于99.9%的精度水平。关于计算时间,秩约化和传统CCSD实现之间的盈亏平衡点出现在具有约30 - 40个活性电子的系统中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验