Ganguly Saswati, Shrivastav Gaurav Prakash, Lin Shang-Chun, Häring Johannes, Haussmann Rudolf, Kahl Gerhard, Oettel Martin, Fuchs Matthias
Soft Condensed Matter Theory, Fachbereich Physik, Universität Konstanz, D-78457 Konstanz, Germany.
Institut für Theoretische Physik, TU Wien, Wiedner Hauptstrasse 8-10, A-1040 Wien, Austria.
J Chem Phys. 2022 Feb 14;156(6):064501. doi: 10.1063/5.0073624.
In complex crystals close to melting or at finite temperatures, different types of defects are ubiquitous and their role becomes relevant in the mechanical response of these solids. Conventional elasticity theory fails to provide a microscopic basis to include and account for the motion of point defects in an otherwise ordered crystalline structure. We study the elastic properties of a point-defect rich crystal within a first principles theoretical framework derived from the microscopic equations of motion. This framework allows us to make specific predictions pertaining to the mechanical properties that we can validate through deformation experiments performed in molecular dynamics simulations.
在接近熔点或处于有限温度的复杂晶体中,不同类型的缺陷普遍存在,并且它们在这些固体的力学响应中所起的作用变得至关重要。传统弹性理论无法提供一个微观基础来纳入并解释在原本有序的晶体结构中点缺陷的运动。我们在由微观运动方程推导而来的第一性原理理论框架内研究富含点缺陷晶体的弹性性质。这个框架使我们能够做出与力学性能相关的具体预测,而这些预测我们可以通过在分子动力学模拟中进行的变形实验来验证。