Lam Jonathan Y, Roberts Samantha C, Shimizu Chisato, Bainto Emelio, Sivilay Nipha, Tremoulet Adriana H, Gardiner Michael A, Kanegaye John T, Hogan Alexander H, Salazar Juan C, Mohandas Sindhu, Szmuszkovicz Jacqueline R, Mahanta Simran, Dionne Audrey, Newburger Jane W, Ansusinha Emily, DeBiasi Roberta L, Hao Shiying, Ling Xuefeng B, Cohen Harvey J, Nemati Shamim, Burns Jane C
medRxiv. 2022 Feb 8:2022.02.07.21268280. doi: 10.1101/2022.02.07.21268280.
Multisystem inflammatory syndrome in children (MIS-C) is a novel disease identified during the COVID-19 pandemic characterized by systemic inflammation following SARS-CoV-2 infection. Delays in diagnosing MIS-C may lead to more severe disease with cardiac dysfunction or death. Most pediatric patients recover fully with anti-inflammatory treatments, but early detection of MIS-C remains a challenge given its clinical similarities to Kawasaki disease (KD) and other acute childhood illnesses.
We developed KIDMATCH ( K awasak I D isease vs M ultisystem Infl A mma T ory syndrome in CH ildren), a deep learning algorithm for screening patients for MIS-C, KD, or other febrile illness, using age, the five classical clinical KD signs, and 17 laboratory measurements prospectively collected within 24 hours of admission to the emergency department from 1448 patients diagnosed with KD or other febrile illness between January 1, 2009 and December 31, 2019 at Rady Children's Hospital. For MIS-C patients, the same data was collected from 131 patients between May 14, 2020 to June 18, 2021 at Rady Children's Hospital, Connecticut Children's Hospital, and Children's Hospital Los Angeles. We trained a two-stage model consisting of feedforward neural networks to distinguish between MIS-C and non MIS-C patients and then KD and other febrile illness. After internally validating the algorithm using 10-fold cross validation, we incorporated a conformal prediction framework to tag patients with erroneous data or distribution shifts, enhancing the model generalizability and confidence by flagging unfamiliar cases as indeterminate instead of making spurious predictions. We externally validated KIDMATCH on 175 MIS-C patients from 16 hospitals across the United States.
KIDMATCH achieved a high median area under the curve in the 10-fold cross validation of 0.988 [IQR: 0.98-0.993] in the first stage and 0.96 [IQR: 0.956-0.972] in the second stage using thresholds set at 95% sensitivity to detect positive MIS-C and KD cases respectively during training. External validation of KIDMATCH on MIS-C patients correctly classified 76/83 (2 rejected) patients from the CHARMS consortium, 47/50 (1 rejected) patients from Boston Children's Hospital, and 36/42 (2 rejected) patients from Children's National Hospital.
KIDMATCH has the potential to aid frontline clinicians with distinguishing between MIS-C, KD, and similar febrile illnesses in a timely manner to allow prompt treatment and prevent severe complications.
Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Heart, Lung, and Blood Institute, Patient-Centered Outcomes Research Institute, National Library of Medicine.
儿童多系统炎症综合征(MIS-C)是在新冠疫情期间发现的一种新型疾病,其特征是感染严重急性呼吸综合征冠状病毒2(SARS-CoV-2)后出现全身炎症。MIS-C诊断延迟可能导致病情加重,出现心脏功能障碍或死亡。大多数儿科患者通过抗炎治疗可完全康复,但鉴于MIS-C与川崎病(KD)及其他儿童急性疾病在临床症状上相似,早期发现MIS-C仍是一项挑战。
我们开发了KIDMATCH(儿童川崎病与多系统炎症综合征鉴别诊断模型),这是一种深度学习算法,用于筛查MIS-C、KD或其他发热性疾病患者,使用的信息包括年龄、KD的五个经典临床体征,以及2009年1月1日至2019年12月31日期间在拉迪儿童医院被诊断为KD或其他发热性疾病的1448例患者在急诊科入院24小时内前瞻性收集的17项实验室检测指标。对于MIS-C患者,从2020年5月14日至2021年6月18日在拉迪儿童医院、康涅狄格儿童医院和洛杉矶儿童医院的131例患者中收集了相同的数据。我们训练了一个由前馈神经网络组成的两阶段模型,以区分MIS-C患者与非MIS-C患者,然后区分KD患者与其他发热性疾病患者。在使用10折交叉验证对算法进行内部验证后,我们纳入了一个共形预测框架,以标记数据错误或分布偏移的患者,通过将不熟悉的病例标记为不确定来增强模型的通用性和可信度,而不是进行虚假预测。我们在美国16家医院的175例MIS-C患者中对KIDMATCH进行了外部验证。
在10折交叉验证中,KIDMATCH在第一阶段的曲线下面积中位数达到0.988 [四分位间距:0.98 - 0.993],在第二阶段为0.96 [四分位间距:0.956 - 0.972],训练期间分别将阈值设定为95%的灵敏度以检测阳性MIS-C和KD病例。KIDMATCH对MIS-C患者的外部验证正确分类了来自CHARM研究联盟的76/83例(2例被拒绝)患者、来自波士顿儿童医院的47/50例(1例被拒绝)患者以及来自儿童国家医院的36/42例(2例被拒绝)患者。
KIDMATCH有可能帮助一线临床医生及时区分MIS-C、KD和类似的发热性疾病,以便及时治疗并预防严重并发症。
尤妮斯·肯尼迪·施莱佛国家儿童健康与人类发展研究所、国家心肺血液研究所、患者为中心的结果研究协会、国立医学图书馆。