Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia.
PLoS One. 2022 Feb 16;17(2):e0260272. doi: 10.1371/journal.pone.0260272. eCollection 2022.
Biofilm-associated infections with Staphylococcus aureus are difficult to treat even after administration of antibiotics that according to the standard susceptibility assays are effective. Currently, the assays used in the clinical laboratories to determine the sensitivity of S. aureus towards antibiotics are not representing the behaviour of biofilm-associated S. aureus, since these assays are performed on planktonic bacteria. In research settings, microcalorimetry has been used for antibiotic susceptibility studies. Therefore, in this study we investigated if we can use isothermal microcalorimetry to monitor the response of biofilm towards antibiotic treatment in real-time. We developed a reproducible method to generate biofilm in an isothermal microcalorimeter setup. Using this system, the sensitivity of 5 methicillin-sensitive S. aureus (MSSA) and 5 methicillin-resistant S. aureus (MRSA) strains from different genetic lineages were determined towards: flucloxacillin, cefuroxime, cefotaxime, gentamicin, rifampicin, vancomycin, levofloxacin, clindamycin, erythromycin, linezolid, fusidic acid, co-trimoxazole, and doxycycline. In contrast to conventional assays, our calorimetry-based biofilm susceptibility assay showed that S. aureus biofilms, regardless MSSA or MRSA, can survive the exposure to the maximum serum concentration of all tested antibiotics. The only treatment with a single antibiotic showing a significant reduction in biofilm survival was rifampicin, yet in 20% of the strains, emerging antibiotic resistance was observed. Furthermore, the combination of rifampicin with flucloxacillin, vancomycin or levofloxacin was able to prevent S. aureus biofilm from becoming resistant to rifampicin. Isothermal microcalorimetry allows real-time monitoring of the sensitivity of S. aureus biofilms towards antibiotics in a fast and reliable way.
金黄色葡萄球菌生物膜相关感染即使在使用根据标准药敏试验有效的抗生素治疗后也难以治愈。目前,临床实验室用于确定金黄色葡萄球菌对抗生素敏感性的检测方法不能反映生物膜相关金黄色葡萄球菌的行为,因为这些检测方法是在浮游细菌上进行的。在研究环境中,微量热法已被用于抗生素药敏研究。因此,在这项研究中,我们研究了是否可以使用等温微量热法实时监测生物膜对抗生素治疗的反应。我们开发了一种可重现的方法,在等温微量热计装置中生成生物膜。使用该系统,确定了来自不同遗传谱系的 5 株甲氧西林敏感金黄色葡萄球菌 (MSSA) 和 5 株甲氧西林耐药金黄色葡萄球菌 (MRSA) 对以下抗生素的敏感性:氟氯西林、头孢呋辛、头孢噻肟、庆大霉素、利福平、万古霉素、左氧氟沙星、克林霉素、红霉素、利奈唑胺、夫西地酸、复方磺胺甲噁唑和多西环素。与传统检测方法相比,我们基于微量热法的生物膜药敏检测显示,金黄色葡萄球菌生物膜,无论 MSSA 还是 MRSA,都能在所有测试抗生素的最大血清浓度暴露下存活。唯一一种能显著降低生物膜存活率的单一抗生素治疗是利福平,但在 20%的菌株中观察到了新的抗生素耐药性。此外,利福平与氟氯西林、万古霉素或左氧氟沙星联合使用能够防止金黄色葡萄球菌生物膜对利福平产生耐药性。等温微量热法允许以快速可靠的方式实时监测金黄色葡萄球菌生物膜对抗生素的敏感性。