Ponce Benavente Luis, Wagemans Jeroen, Hinkel Dennis, Aguerri Lajusticia Alba, Lavigne Rob, Trampuz Andrej, Gonzalez Moreno Mercedes
Corporate Member of Freie Universität Berlin and Humboldt, Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.
BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
Front Microbiol. 2024 Jul 8;15:1372325. doi: 10.3389/fmicb.2024.1372325. eCollection 2024.
´ biofilm-forming ability and rapid resistance development pose a significant challenge to successful treatment, particularly in postoperative complications, emphasizing the need for enhanced therapeutic strategies. Bacteriophage (phage) therapy has reemerged as a promising and safe option to combat multidrug-resistant bacteria. However, questions regarding the efficacy of phages against biofilms and the development of phage resistance require further evaluation. Expanding on the adaptable and evolutionary characteristics of phages, we introduce an evolutionary approach to enhance the activity of phages against biofilms. Unlike other directed evolution methods performed in planktonic cultures, we employed pre-stablished biofilms to do a serial-passage assay to evolve phages monitored by real-time isothermal microcalorimetry (IMC). The evolved phages demonstrated an expanded host range, with the CUB_MRSA-COL_R9 phage infecting 83% of strains in the collection ( = 72), surpassing the ISP phage, which represented the widest host range (44%) among the ancestral phages. In terms of antimicrobial efficacy, IMC data revealed superior suppression of bacterial growth by the evolved phages compared to the ancestral CUB-M and/or ISP phages against the respective bacterial strain. The phage cocktail exhibited higher efficacy, achieving over 90% suppression relative to the growth control even after 72 h of monitoring. Biofilm cell-counts, determined by RT-qPCR, confirmed the enhanced antibiofilm performance of evolved phages with no biofilm regrowth up to 48 h in treated MRSA15 and MRSA-COL strains. Overall, our results underscore the potential of biofilm-adapted phage cocktails to improve clinical outcomes in biofilm-associated infections, minimizing the emergence of resistance and lowering the risk of infection relapse. However, further investigation is necessary to evaluate the translatability of our results from to models, especially in the context of combination therapy with the current standard of care treatment.
生物膜形成能力和快速产生耐药性对成功治疗构成了重大挑战,尤其是在术后并发症中,这凸显了增强治疗策略的必要性。噬菌体疗法已重新成为对抗多重耐药细菌的一种有前景且安全的选择。然而,关于噬菌体对生物膜的疗效以及噬菌体耐药性的发展等问题仍需要进一步评估。基于噬菌体的适应性和进化特性,我们引入了一种进化方法来增强噬菌体对生物膜的活性。与在浮游培养物中进行的其他定向进化方法不同,我们利用预先形成的生物膜进行连续传代试验,以通过实时等温微量热法(IMC)监测噬菌体的进化。进化后的噬菌体表现出扩大的宿主范围,CUB_MRSA - COL_R9噬菌体能够感染集合中83%的菌株(n = 72),超过了ISP噬菌体,而ISP噬菌体在原始噬菌体中代表最广的宿主范围(44%)。在抗菌效果方面,IMC数据显示,与原始的CUB - M和/或ISP噬菌体相比,进化后的噬菌体对相应细菌菌株的细菌生长抑制作用更强。噬菌体鸡尾酒表现出更高的疗效,即使在监测72小时后,相对于生长对照仍能实现超过90%的抑制率。通过RT - qPCR确定的生物膜细胞计数证实,进化后的噬菌体具有更强的抗生物膜性能,在处理的MRSA15和MRSA - COL菌株中,长达48小时没有生物膜再生长。总体而言,我们的结果强调了生物膜适应性噬菌体鸡尾酒在改善生物膜相关感染临床结果方面的潜力,可将耐药性的出现降至最低,并降低感染复发的风险。然而,有必要进一步研究以评估我们的结果从体外模型到体内模型的可转化性,特别是在与当前标准护理治疗联合治疗的背景下。