Suppr超能文献

基于振荡理论的用于手部运动分类的表面肌电信号实时建模与特征提取方法

Real-time modeling and feature extraction method of surface electromyography signal for hand movement classification based on oscillatory theory.

作者信息

Xiao Feiyun, Mu Jingsong, Lu Jieping, Dong Guangxu, Wang Yong

机构信息

School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.

Intelligent Interconnected Systems Laboratory of Anhui Province, Hefei University of Technology, Hefei 230009, People's Republic of China.

出版信息

J Neural Eng. 2022 Mar 25;19(2). doi: 10.1088/1741-2552/ac55af.

Abstract

Research of surface electromyography (sEMG) signal modeling and feature extraction is important in human motion intention recognition, prosthesis and exoskeleton robots. However, the existing methods mostly use the signal segmentation processing method rather than the point-to-point signal processing method, and lack physiological mechanism support.. In this study, a real-time sEMG signal modeling and separation method is developed based on oscillatory theory. On this basis, an sEMG signal feature extraction method is constructed, and an ensemble learning method is combined to achieve real-time human hand motion intention recognition.The experimental results show that the average root mean square difference value of the sEMG signal modeling is 0.3838 ± 0.0591, and the average accuracy of human hand motion intention recognition is 96.03 ± 1.74%. On a computer with Intel (R) Core (TM) i5-8250U CPU running Matlab 2016Rb, the execution time for the sEMG signal with an actual duration of 2 s is 0.66 s.. Compared with several existing methods, the proposed method has better modeling accuracy, motion intention recognition accuracy and real-time performance. The method developed in this study may provide a new perspective on sEMG modeling and feature extraction for hand movement classification.

摘要

表面肌电图(sEMG)信号建模与特征提取的研究在人体运动意图识别、假肢和外骨骼机器人领域具有重要意义。然而,现有方法大多采用信号分割处理方法而非逐点信号处理方法,且缺乏生理机制支持。在本研究中,基于振荡理论开发了一种实时sEMG信号建模与分离方法。在此基础上,构建了一种sEMG信号特征提取方法,并结合集成学习方法实现了人体手部运动意图的实时识别。实验结果表明,sEMG信号建模的平均均方根差值为0.3838±0.0591,人体手部运动意图识别的平均准确率为96.03±1.74%。在运行Matlab 2016Rb的英特尔(R)酷睿(TM)i5-8250U CPU计算机上,实际持续时间为2 s的sEMG信号的执行时间为0.66 s。与几种现有方法相比,所提方法具有更好的建模精度、运动意图识别精度和实时性能。本研究中开发的方法可能为手部运动分类的sEMG建模和特征提取提供新的视角。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验