Centre for Ecological Research, Vácrátót, Hungary.
PeerJ. 2022 Jan 14;10:e12763. doi: 10.7717/peerj.12763. eCollection 2022.
Community assembly by trait selection (CATS) allows for the detection of environmental filtering and estimation of the relative role of local and regional (meta-community-level) effects on community composition from trait and abundance data without using environmental data. It has been shown that Poisson regression of abundances against trait data results in the same parameter estimates. Abundance data do not necessarily follow a Poisson distribution, and in these cases, other generalized linear models should be fitted to obtain unbiased parameter estimates.
This paper discusses how the original algorithm for calculating the relative role of local and regional effects has to be modified if Poisson model is not appropriate.
It can be shown that the use of the logarithm of regional relative abundances as an offset is appropriate only if a log-link function is applied. Otherwise, the link function should be applied to the product of local total abundance and regional relative abundances. Since this product may be outside the domain of the link function, the use of log-link is recommended, even if it is not the canonical link. An algorithm is also suggested for calculating the offset when data are zero-inflated. The relative role of local and regional effects is measured by Kullback-Leibler R. The formula for this measure presented by Shipley (2014) is valid only if the abundances follow a Poisson distribution. Otherwise, slightly different formulas have to be applied. Beyond theoretical considerations, the proposed refinements are illustrated by numerical examples. CATS regression could be a useful tool for community ecologists, but it has to be slightly modified when abundance data do not follow a Poisson distribution. This paper gives detailed instructions on the necessary refinement.
通过特征选择进行群落组装(CATS)允许在不使用环境数据的情况下,从特征和丰度数据中检测环境过滤,并估计对群落组成的局部和区域(元群落水平)效应的相对作用。已经表明,对丰度数据进行特征数据的泊松回归会产生相同的参数估计。丰度数据不一定遵循泊松分布,在这些情况下,应该拟合其他广义线性模型以获得无偏的参数估计。
本文讨论了如果泊松模型不适用,计算局部和区域效应相对作用的原始算法需要如何修改。
可以证明,只有在应用对数链接函数的情况下,使用区域相对丰度的对数作为偏移量才是合适的。否则,应该将链接函数应用于本地总丰度和区域相对丰度的乘积。由于这个乘积可能超出链接函数的范围,因此建议使用对数链接,即使它不是标准链接。还提出了一种用于计算零膨胀数据偏移量的算法。局部和区域效应的相对作用由 Kullback-Leibler R 测量。Shipley(2014)提出的该度量公式仅在丰度遵循泊松分布的情况下有效。否则,必须应用略有不同的公式。除了理论考虑之外,所提出的改进还通过数值示例进行了说明。CATS 回归可以成为群落生态学家的有用工具,但在丰度数据不遵循泊松分布的情况下,它必须进行一些修改。本文详细说明了必要的改进。