Krache Anis, Fontan Charlotte, Pestourie Carine, Bardiès Manuel, Bouvet Yann, Payoux Pierre, Chatelut Etienne, White-Koning Melanie, Salabert Anne-Sophie
CRCT, UMR 1037, Université de Toulouse, INSERM, Université Paul-Sabatier, Toulouse, France.
ToNIC, Toulouse NeuroImaging Center, UMR 1214, Université de Toulouse, INSERM, Université Paul-Sabatier, Toulouse, France.
Front Med (Lausanne). 2022 Jan 31;8:741855. doi: 10.3389/fmed.2021.741855. eCollection 2021.
Anti-PDL1 is a monoclonal antibody targeting the programmed death-cell ligand (PD-L1) by blocking the programmed death-cell (PD-1)/PD-L1 axis. It restores the immune system response in several tumours, such as non-small cell lung cancer (NSCLC). Anti-PDL1 or anti-PD1 treatments rely on PD-L1 tumoural expression assessed by immunohistochemistry on biopsy tissue. However, depending on the biopsy extraction site, PD-L1 expression can vary greatly. Non-invasive imaging enables whole-body mapping of PD-L1 sites and could improve the assessment of tumoural PD-L1 expression.
Pharmacokinetics (PK), biodistribution and dosimetry of a murine anti-PDL1 radiolabelled with zirconium-89, were evaluated in both healthy mice and immunocompetent mice with lung cancer. Preclinical PET (μPET) imaging was used to analyse [Zr]DFO-Anti-PDL1 distribution in both groups of mice. Non-compartmental (NCA) and compartmental (CA) PK analyses were performed in order to describe PK parameters and assess area under the concentration-time curve (AUC) for dosimetry evaluation in humans.
Organ distribution was correctly estimated using PK modelling in both healthy mice and mice with lung cancer. Tumoural uptake occurred within 24 h post-injection of [Zr]DFO-Anti-PDL1, and the best imaging time was at 48 h according to the signal-to-noise ratio (SNR) and image quality. An blocking study confirmed that [Zr]DFO-anti-PDL1 specifically targeted PD-L1 in CMT167 lung tumours in mice. AUC in organs was estimated using a 1-compartment PK model and extrapolated to human (using allometric scaling) in order to estimate the radiation exposure in human. Human-estimated effective dose was 131 μSv/MBq.
The predicted dosimetry was similar or lower than other antibodies radiolabelled with zirconium-89 for immunoPET imaging.
抗程序性死亡配体1(Anti-PDL1)是一种单克隆抗体,通过阻断程序性死亡细胞(PD-1)/程序性死亡细胞配体1(PD-L1)轴来靶向程序性死亡细胞配体1(PD-L1)。它能恢复多种肿瘤(如非小细胞肺癌(NSCLC))中的免疫系统反应。抗PDL1或抗PD1治疗依赖于通过活检组织免疫组化评估的PD-L1肿瘤表达。然而,根据活检取材部位的不同,PD-L1表达可能会有很大差异。非侵入性成像能够对PD-L1位点进行全身定位,并且可以改善肿瘤PD-L1表达的评估。
对用锆-89放射性标记的鼠源抗PD-L1进行药代动力学(PK)、生物分布和剂量测定评估,实验对象为健康小鼠和患有肺癌的免疫活性小鼠。采用临床前正电子发射断层扫描(μPET)成像分析两组小鼠体内[Zr]DFO-抗PD-L1的分布情况。进行非房室(NCA)和房室(CA)PK分析,以描述PK参数并评估浓度-时间曲线下面积(AUC),用于人体剂量测定评估。
在健康小鼠和患有肺癌的小鼠中,使用PK模型均能正确估计器官分布情况。注射[Zr]DFO-抗PD-L1后24小时内肿瘤出现摄取,根据信噪比(SNR)和图像质量,最佳成像时间为48小时。一项阻断研究证实,[Zr]DFO-抗PD-L1在小鼠的CMT167肺肿瘤中特异性靶向PD-L1。使用单房室PK模型估计器官中的AUC,并通过异速生长比例换算外推至人体,以估计人体的辐射暴露量。人体估计有效剂量为131μSv/MBq。
预测的剂量测定结果与其他用锆-89放射性标记用于免疫正电子发射断层扫描成像的抗体相似或更低。