Hagopian Arthur, Touja Justine, Louvain Nicolas, Stievano Lorenzo, Filhol Jean-Sébastien, Monconduit Laure
ICGM, Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France.
Réseau sur le Stockage Electrochimique de l'Energie (RS2E), Hub de l'Energie, FR CNRS 3459 Amiens, France.
ACS Appl Mater Interfaces. 2022 Mar 2;14(8):10319-10326. doi: 10.1021/acsami.1c22889. Epub 2022 Feb 17.
The properties of hybrid Sn-based artificial solid electrolyte interphase (SEI) layers in protecting Li-metal electrodes toward surface instabilities were investigated via a combined experimental and theoretical approach. The performance of coating layers can be coherently explained based on the nature of the coating species. Notably, when starting from a chloride precursor, the hybrid coating layer is formed by an intimate mixture of LiSn and LiCl: the first ensures a high bulk ionic conductivity, while the second forms an external layer allowing a fast surface diffusion of Li to avoid dendrite growth, a low surface tension to guarantee the thermodynamic stability of the protective layer, and a negative underneath plating energy (UPE) to promote lithium plating at the interface between the Li metal and the coating layer. The synergy between the two components and, in particular, the crucial role of LiCl in the promotion of such an underneath plating mechanism are shown to be the key properties to improve the performance of artificial SEI layers.
通过实验与理论相结合的方法,研究了混合锡基人工固体电解质界面(SEI)层在保护锂金属电极免受表面不稳定性方面的性能。基于涂层物质的性质,可以连贯地解释涂层的性能。值得注意的是,当从氯化物前驱体开始时,混合涂层由LiSn和LiCl的紧密混合物形成:前者确保了高的体相离子导电性,而后者形成外层,允许Li快速表面扩散以避免枝晶生长,具有低表面张力以保证保护层的热力学稳定性,以及负的欠电位沉积能量(UPE)以促进锂在锂金属与涂层之间的界面处沉积。这两种成分之间的协同作用,特别是LiCl在促进这种欠电位沉积机制中的关键作用,被证明是改善人工SEI层性能的关键特性。