Liu Peng, Zhang Jianwei, Zhong Lei, Huang Sheng, Gong Li, Han Dongmei, Wang Shuanjin, Xiao Min, Meng Yuezhong
The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
Instrumental Analysis Research Center, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
Small. 2021 Oct;17(41):e2102454. doi: 10.1002/smll.202102454. Epub 2021 Sep 13.
Lithium (Li) metal has been generally noticed as the most prospective anode for next-generation batteries attributed to its outstanding theoretical capacity and low electrochemical potential. Nevertheless, the unstable solid-electrolyte interphase (SEI) and uncontrollable dendrite growth cause poor reversibility and fetter the practical application of Li metal anodes. Herein, a new organic-inorganic hybrid polymer artificial SEI (POSS-LiBMAB) layer with uniform lithium-ion paths at a molecular level is designed to stabilize Li metal anodes. The SEI layer is constructed by the thiol-ene "click chemistry" reaction between inorganic polyhedral oligomeric silsesquioxane containing eight-mercaptopropyl (POSS-SH) with lithium bis (allylmalonato) borate (LiBMAB) on Li foil. What is more, the POSS-LiBMAB film can be cross-linked and self-reinforced via intermolecular SC bonds. Benefiting from its flexible polymeric covalent structure and noble inorganic Si O -type cubes, the organic-inorganic hybrid polymer layer is flexible and effectively tolerates the volume change of Li metal anodes during plating/stripping cycles. In addition, this layer shows loose and uniformly distributed electrostatic interaction between Li and charge delocalized sp boron-oxygen anions, which aids to form a uniform intermolecular Li path regulating the homogeneous distribution of Li flux on Li anodes. Finally, the designed POSS-LiBMAB layer has high ionic conductivity and lithium-ion transference number, which can effectively promote Li diffusion and guide Li deposition beneath the SEI layer. Therefore, with the protection of the POSS-LiBMAB layer, the Li metal anode exhibits stable cycling at 5 mA cm for more than 1000 h, and the LFP//Li full cells also present outstanding cycling stability.
锂(Li)金属因其出色的理论容量和低电化学势,已被普遍视为下一代电池最具前景的负极材料。然而,不稳定的固体电解质界面(SEI)和不可控的枝晶生长导致可逆性差,阻碍了锂金属负极的实际应用。在此,设计了一种在分子水平上具有均匀锂离子传输路径的新型有机-无机杂化聚合物人工SEI(POSS-LiBMAB)层,以稳定锂金属负极。该SEI层是通过含八个巯丙基的无机多面体低聚倍半硅氧烷(POSS-SH)与锂双(烯丙基丙二酸)硼酸酯(LiBMAB)在锂箔上发生硫醇-烯“点击化学”反应构建而成。此外,POSS-LiBMAB膜可通过分子间SC键交联并自我增强。受益于其灵活的聚合物共价结构和惰性无机Si O型立方体,该有机-无机杂化聚合物层具有柔韧性,能有效耐受锂金属负极在电镀/脱镀循环过程中的体积变化。此外,该层在锂与电荷离域的sp硼氧阴离子之间表现出松散且均匀分布的静电相互作用,有助于形成均匀的分子间锂传输路径,调节锂负极上锂通量的均匀分布。最后,所设计的POSS-LiBMAB层具有高离子电导率和锂离子迁移数,能有效促进锂扩散并引导锂在SEI层下方沉积。因此,在POSS-LiBMAB层的保护下,锂金属负极在5 mA cm下可稳定循环超过1000小时,LiFePO₄//Li全电池也呈现出出色的循环稳定性。