Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA.
Clin Orthop Relat Res. 2022 Jun 1;480(6):1208-1219. doi: 10.1097/CORR.0000000000002146. Epub 2022 Feb 17.
Structural cortical bone allografts are a reasonable treatment option for patients with large cortical bone defects caused by trauma, tumors, or complications of arthroplasty. Although structural cortical bone allografts provide the benefit of an osteoconductive material, they are susceptible to fatigue failure (fracture) and carry a risk of disease transmission. Radiation-sterilization at the recommended dose of 25 kGy decreases the risk of disease transmission. However, previous studies demonstrated that radiation sterilization at this dose can negatively impact the high cycle-fatigue life of cortical bone. Although the effects of higher doses of radiation on cortical bone allografts are well described, the effects of lower doses of radiation on a high-cycle fatigue life of cortical bone are poorly understood.
QUESTIONS/PURPOSES: (1) Does the cycle-fatigue life of human cortical allograft bone vary with gamma radiation dose levels of 0 (control), 10 kGy, 17.5 kGy, and 25 kGy? (2) What differences in Raman spectral biomarkers are observed following varying doses of gamma radiation exposure?
The high-cycle fatigue behavior of human cortical bone specimens was examined at different radiation sterilization doses under physiologic stress levels (35 MPa) and in a 37° C phosphate-buffered saline bath using a custom-designed rotating-bending fatigue device. Six human femora from three donors were obtained for this study (two male, 63 and 61 years old, respectively, and one female, 48 years old). Test specimens were allocated among four treatment groups (0 kGy [control], 10 kGy, 17.5 kGy, and 25 kGy) based on donor and anatomic location of harvest site (both length and cross-sectional quadrant of femoral diaphysis) to ensure equal variation (n = 13 per group). Specimens underwent high-cycle fatigue testing to failure. The number of cycles to failure was recorded. Raman spectroscopy (a noninvasive vibrational spectroscopy used to qualitatively assess bone quality) was used to detect whether any changes in Raman spectral biomarkers occurred after varying doses of gamma radiation exposure.
There was a decrease in the log-transformed mean high-cycle fatigue life in specimens irradiated at 25 kGy (5.39 ± 0.32) compared with all other groups (0 kGy: 6.20 ± 0.50; 10k Gy: 6.35 ± 0.79; 17.5 kGy: 6.01 ± 0.53; p = 0.001). Specimens irradiated at 25 kGy were also more likely to exhibit a more brittle fracture surface pattern than specimens with more ductile fracture surface patterns irradiated at 0 kGy, 10 kGy, and 17.5 kGy (p = 0.04). The Raman biomarker for the ratio of the relative amount of disordered collagen to ordered collagen showed a decrease at the 10 kGy radiation level from 1.522 ± 0.025 preirradiation to 1.489 ± 0.024 postirradiation (p = 0.01); no other detectable changes in Raman biomarkers were observed.
The high-cycle fatigue life of cortical bone undergoes a nonlinear, dose-dependent decrease with an increase in gamma radiation sterilization in a clinically relevant dose range (0-25 kGy). Importantly, a notable drop-off in the high-cycle fatigue life of cortical bone appeared to occur between 17.5 kGy and 25 kGy, correlating to a sixfold decrease in mean cycles to failure. We speculate that the decrease in the Raman biomarker for disordered collagen at 10 kGy with no loss in high-cycle fatigue life may be caused by an increased amount of nonenzymatic crosslinking of the collagen backbone relative to collagen chain-scission (whereas the benefits of crosslinking may be outweighed by excess scission of the collagen backbone at higher radiation doses), but future studies will need to ascertain whether this in fact is the case.
Radiation sterilization at the industry standard of 25 kGy has a substantial negative impact on the high-cycle fatigue life of cortical bone. Given these findings, it is possible to provide a meaningful increase in the high-cycle fatigue life and improve the overall functional lifetime of cortical bone allografts by lowering the radiation-sterilization dose below 25 kGy. Future work on radiation-sterilization methods at these clinically relevant doses is warranted to aid in preserving the high cycle fatigue life of cortical bone allografts while maintaining sterility.
结构性皮质骨同种异体移植物是一种合理的治疗选择,适用于创伤、肿瘤或关节置换术并发症引起的大皮质骨缺损的患者。尽管结构性皮质骨同种异体移植物提供了一种骨诱导材料的益处,但它们容易发生疲劳失效(骨折),并存在疾病传播的风险。推荐剂量为 25 kGy 的辐照灭菌可降低疾病传播的风险。然而,先前的研究表明,在该剂量下的辐照灭菌会对皮质骨的高周疲劳寿命产生负面影响。尽管较高剂量的辐射对皮质骨同种异体移植物的影响已有很好的描述,但较低剂量的辐射对皮质骨高周疲劳寿命的影响知之甚少。
问题/目的:(1)人皮质同种异体移植物骨的循环疲劳寿命是否随伽马射线剂量水平为 0(对照)、10 kGy、17.5 kGy 和 25 kGy 而变化?(2)在不同剂量的伽马射线照射下,拉曼光谱生物标志物有何不同?
在生理应激水平(35 MPa)下,使用定制的旋转弯曲疲劳装置,在 37°C 磷酸盐缓冲盐溶液中,对不同辐射灭菌剂量下的人皮质骨标本的高周疲劳行为进行了检查。本研究共使用了来自三个供体的六个股骨(两个男性,分别为 63 岁和 61 岁,一个女性,48 岁)。根据供体和收获部位的解剖位置(股骨骨干的长度和横截面象限)将测试标本分配到四个处理组(0 kGy[对照]、10 kGy、17.5 kGy 和 25 kGy)中,以确保等变(每组 13 个样本)。标本进行高周疲劳试验至失效。记录失效的循环次数。拉曼光谱(一种用于定性评估骨质量的非侵入性振动光谱)用于检测在不同剂量的伽马射线照射后是否发生任何拉曼光谱生物标志物的变化。
与其他所有组(0 kGy:6.20 ± 0.50;10kGy:6.35 ± 0.79;17.5 kGy:6.01 ± 0.53;p = 0.001)相比,辐照至 25 kGy 的标本的对数平均高周疲劳寿命降低。与辐照至 0 kGy、10 kGy 和 17.5 kGy 的标本相比,辐照至 25 kGy 的标本更有可能表现出更脆的断裂表面模式(p = 0.04)。在 10 kGy 辐射水平下,相对于无序胶原的相对量与有序胶原的比值的拉曼生物标志物从辐照前的 1.522 ± 0.025 降低至辐照后的 1.489 ± 0.024(p = 0.01);没有观察到其他可检测到的拉曼生物标志物的变化。
皮质骨的高周疲劳寿命在临床相关剂量范围内(0-25 kGy)随伽马射线灭菌剂量呈非线性、剂量依赖性下降。重要的是,皮质骨的高周疲劳寿命似乎在 17.5 kGy 和 25 kGy 之间出现明显下降,这与平均失效循环数减少六倍相关。我们推测,在 10 kGy 时,无序胶原的拉曼生物标志物减少,而高周疲劳寿命没有损失,这可能是由于胶原主链的非酶交联增加相对于胶原链断裂(而在较高的辐射剂量下,交联的益处可能被胶原主链的过度断裂所抵消),但未来的研究需要确定这是否确实如此。
工业标准 25 kGy 的辐照灭菌对皮质骨的高周疲劳寿命有很大的负面影响。鉴于这些发现,通过将辐射灭菌剂量降低至 25 kGy 以下,有可能显著提高皮质骨同种异体移植物的高周疲劳寿命,并提高其整体功能寿命。需要对这些临床相关剂量下的辐射灭菌方法进行进一步研究,以在保持无菌的同时,有助于维持皮质骨同种异体移植物的高周疲劳寿命。