Department of Endocrinology, CHU Brugmann, Université Libre de Bruxelles, Brussels, Belgium.
Data Centre, Inst. J. Bordet, Université Libre de Bruxelles, Brussels, Belgium.
J Clin Endocrinol Metab. 2022 May 17;107(6):e2438-e2448. doi: 10.1210/clinem/dgac092.
Individualized fracture risk may help to select patients requiring a pharmacological treatment for osteoporosis. FRAX and the Garvan fracture risk calculators are the most used tools, although their external validation has shown significant differences in their risk prediction ability.
Using data from the Fracture Risk Brussels Epidemiological Enquiry study, a cohort of 3560 postmenopausal women aged 60 to 85 years, we aimed to construct original 5-year fracture risk prediction models using validated clinical risk factors (CRFs). Three models of competing risk analysis were developed to predict major osteoporotic fractures (MOFs), all fractures, and central fractures (femoral neck, shoulder, clinical spine, pelvis, ribs, scapula, clavicle, sternum).
Age, a history of fracture, and hip or spine BMD were predictors common to the 3 models. Excessive alcohol intake and the presence of comorbidities were specific additional CRFs for MOFs, a history of fall for all fractures, and rheumatoid arthritis for central fractures. Our models predicted the fracture probability at 5 years with an acceptable accuracy (Brier scores ≤ 0.1) and had a good discrimination power (area under the receiver operating curve of 0.73 for MOFs and 0.72 for central fractures) when internally validated by bootstrap. Three simple nomograms, integrating significant CRFs and the mortality risk, were constructed for different fracture sites. In conclusion, we derived 3 models predicting fractures with an acceptable accuracy, particularly for MOFs and central fractures. The models are based on a limited number of CRFs, and we constructed nomograms for use in clinical practice.
个体化骨折风险有助于选择需要骨质疏松药物治疗的患者。FRAX 和加文骨折风险计算器是最常用的工具,但它们的外部验证表明,其风险预测能力存在显著差异。
利用 Fracture Risk Brussels Epidemiological Enquiry 研究的数据,对 3560 名年龄在 60 至 85 岁的绝经后妇女进行队列研究,我们旨在使用经过验证的临床风险因素 (CRFs) 构建原始的 5 年骨折风险预测模型。我们开发了三种竞争风险分析模型,以预测主要骨质疏松性骨折 (MOFs)、所有骨折和中央骨折 (股骨颈、肩部、临床脊柱、骨盆、肋骨、肩胛骨、锁骨、胸骨)。
年龄、骨折史和髋部或脊柱 BMD 是 3 种模型共有的预测因素。过度饮酒和合并症是 MOFs 的特定附加 CRFs,所有骨折的跌倒史和中央骨折的类风湿关节炎史。我们的模型通过 bootstrap 内部验证,以可接受的准确性(Brier 分数≤0.1)预测 5 年内骨折概率,并具有良好的区分能力(MOFs 的接收者操作特征曲线下面积为 0.73,中央骨折为 0.72)。我们构建了 3 种简单的诺模图,整合了重要的 CRFs 和死亡率风险,用于不同的骨折部位。总之,我们得出了 3 种具有可接受准确性的预测骨折的模型,特别是对 MOFs 和中央骨折。这些模型基于有限数量的 CRFs,我们构建了诺模图供临床实践使用。