Blanco-Portals Javier, Peiró Francesca, Estradé Sònia
LENS-MIND, Department of Electronics and Biomedical Engineering, Universitat de Barcelona, 08028Barcelona, Spain.
Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028Barcelona, Spain.
Microsc Microanal. 2022 Feb;28(1):109-122. doi: 10.1017/S1431927621013696.
Hierarchical density-based spatial clustering of applications with noise (HDBSCAN) and uniform manifold approximation and projection (UMAP), two new state-of-the-art algorithms for clustering analysis, and dimensionality reduction, respectively, are proposed for the segmentation of core-loss electron energy loss spectroscopy (EELS) spectrum images. The performances of UMAP and HDBSCAN are systematically compared to the other clustering analysis approaches used in EELS in the literature using a known synthetic dataset. Better results are found for these new approaches. Furthermore, UMAP and HDBSCAN are showcased in a real experimental dataset from a core–shell nanoparticle of iron and manganese oxides, as well as the triple combination nonnegative matrix factorization–UMAP–HDBSCAN. The results obtained indicate how the complementary use of different combinations may be beneficial in a real-case scenario to attain a complete picture, as different algorithms highlight different aspects of the dataset studied.
提出了基于密度的带噪声应用分层空间聚类算法(HDBSCAN)和均匀流形逼近与投影算法(UMAP),分别用于聚类分析和降维,以对芯损电子能量损失谱(EELS)图像进行分割。使用已知的合成数据集,将UMAP和HDBSCAN的性能与文献中EELS使用的其他聚类分析方法进行了系统比较。这些新方法取得了更好的结果。此外,UMAP和HDBSCAN在铁和锰氧化物核壳纳米颗粒的真实实验数据集中得到展示,以及非负矩阵分解 - UMAP - HDBSCAN的三重组合。所得结果表明,在实际情况下,不同组合的互补使用可能有助于全面了解情况,因为不同算法突出了所研究数据集的不同方面。