Deng Haitao D, Zhao Hongbo, Jin Norman, Hughes Lauren, Savitzky Benjamin H, Ophus Colin, Fraggedakis Dimitrios, Borbély András, Yu Young-Sang, Lomeli Eder G, Yan Rui, Liu Jueyi, Shapiro David A, Cai Wei, Bazant Martin Z, Minor Andrew M, Chueh William C
Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA.
Nat Mater. 2022 May;21(5):547-554. doi: 10.1038/s41563-021-01191-0. Epub 2022 Feb 17.
Constitutive laws underlie most physical processes in nature. However, learning such equations in heterogeneous solids (for example, due to phase separation) is challenging. One such relationship is between composition and eigenstrain, which governs the chemo-mechanical expansion in solids. Here we developed a generalizable, physically constrained image-learning framework to algorithmically learn the chemo-mechanical constitutive law at the nanoscale from correlative four-dimensional scanning transmission electron microscopy and X-ray spectro-ptychography images. We demonstrated this approach on LiFePO, a technologically relevant battery positive electrode material. We uncovered the functional form of the composition-eigenstrain relation in this two-phase binary solid across the entire composition range (0 ≤ X ≤ 1), including inside the thermodynamically unstable miscibility gap. The learned relation directly validates Vegard's law of linear response at the nanoscale. Our physics-constrained data-driven approach directly visualizes the residual strain field (by removing the compositional and coherency strain), which is otherwise impossible to quantify. Heterogeneities in the residual strain arise from misfit dislocations and were independently verified by X-ray diffraction line profile analysis. Our work provides the means to simultaneously quantify chemical expansion, coherency strain and dislocations in battery electrodes, which has implications on rate capabilities and lifetime. Broadly, this work also highlights the potential of integrating correlative microscopy and image learning for extracting material properties and physics.
本构定律是自然界中大多数物理过程的基础。然而,在非均质固体中学习此类方程(例如,由于相分离)具有挑战性。一种这样的关系是成分与本征应变之间的关系,它控制着固体中的化学机械膨胀。在这里,我们开发了一种可推广的、受物理约束的图像学习框架,以从相关的四维扫描透射电子显微镜和X射线光谱叠层成像中算法性地学习纳米尺度的化学机械本构定律。我们在LiFePO(一种技术上相关的电池正极材料)上展示了这种方法。我们揭示了这种两相二元固体在整个成分范围(0≤X≤1)内,包括在热力学不稳定的混溶间隙内,成分-本征应变关系的函数形式。所学习到的关系直接在纳米尺度上验证了维加德线性响应定律。我们基于物理约束的数据驱动方法直接可视化了残余应变场(通过去除成分应变和相干应变),否则这是无法量化的。残余应变中的不均匀性源于失配位错,并通过X射线衍射线轮廓分析得到了独立验证。我们的工作提供了同时量化电池电极中化学膨胀、相干应变和位错的方法,这对倍率性能和寿命有影响。广泛地说,这项工作还突出了整合相关显微镜和图像学习以提取材料特性和物理性质的潜力。