Miao Jianwei
Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA, USA.
California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
Nature. 2025 Jan;637(8045):281-295. doi: 10.1038/s41586-024-08278-z. Epub 2025 Jan 8.
Microscopy and crystallography are two essential experimental methodologies for advancing modern science. They complement one another, with microscopy typically relying on lenses to image the local structures of samples, and crystallography using diffraction to determine the global atomic structure of crystals. Over the past two decades, computational microscopy, encompassing coherent diffractive imaging (CDI) and ptychography, has advanced rapidly, unifying microscopy and crystallography to overcome their limitations. Here, I review the innovative developments in CDI and ptychography, which achieve exceptional imaging capabilities across nine orders of magnitude in length scales, from resolving atomic structures in materials at sub-ångstrom resolution to quantitative phase imaging of centimetre-sized tissues, using the same principle and similar computational algorithms. These methods have been applied to determine the 3D atomic structures of crystal defects and amorphous materials, visualize oxygen vacancies in high-temperature superconductors and capture ultrafast dynamics. They have also been used for nanoscale imaging of magnetic, quantum and energy materials, nanomaterials, integrated circuits and biological specimens. By harnessing fourth-generation synchrotron radiation, X-ray-free electron lasers, high-harmonic generation, electron microscopes, optical microscopes, cutting-edge detectors and deep learning, CDI and ptychography are poised to make even greater contributions to multidisciplinary sciences in the years to come.
显微镜学和晶体学是推动现代科学发展的两种重要实验方法。它们相辅相成,显微镜学通常依靠透镜对样品的局部结构进行成像,而晶体学则利用衍射来确定晶体的整体原子结构。在过去二十年中,包括相干衍射成像(CDI)和叠层成像术在内的计算显微镜学发展迅速,将显微镜学和晶体学统一起来以克服它们的局限性。在此,我回顾CDI和叠层成像术的创新性进展,它们利用相同的原理和相似的计算算法,在从亚埃分辨率解析材料中的原子结构到厘米级组织的定量相成像的九个数量级的长度尺度上实现了卓越的成像能力。这些方法已被应用于确定晶体缺陷和非晶材料的三维原子结构、可视化高温超导体中的氧空位以及捕捉超快动力学过程。它们还被用于磁性、量子和能量材料、纳米材料、集成电路及生物样本的纳米级成像。通过利用第四代同步辐射、X射线自由电子激光、高次谐波产生、电子显微镜、光学显微镜、前沿探测器和深度学习,CDI和叠层成像术在未来几年有望为多学科科学做出更大贡献。