Department of Nutrition, School of Public Health, Sun Yat-Sen University (Northern Campus), Guangzhou, Guangdong Province 510080, P. R. China.
Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, P. R. China.
Food Funct. 2022 Mar 7;13(5):2884-2898. doi: 10.1039/d1fo04112f.
Sulforaphane (SFN) is an isothiocyanate (ITC) derived from a glucosinolate, glucoraphinin found in cruciferous vegetables. There are few studies that focus on the role of SFN in angiogenesis under hypoxic conditions. The effect of SFN on angiogenesis and the underlying mechanisms including the roles of Nrf2 and mitochondrial dynamics were investigated using cultured human umbilical vein endothelial cells (HUVECs) in hypoxia. SFN at low doses (1.25-5 μM) increased hypoxia-induced HUVEC migration and tube formation, and alleviated hypoxia-induced retarded proliferation, but high doses (≥10 μM) exhibited an opposite effect. Under hypoxia, the expression of Nrf2 and heme oxygenase-1 was up-regulated by SFN treatment. Nrf2 knockdown abrogated SFN (2.5 μM)-induced tube formation and further potentiated the inhibitory effect of SFN (10 μM) on angiogenesis. Meanwhile, the mitochondrial function, morphology and expression of dynamic-related proteins suggested that low-dose SFN protected against hypoxia-induced mitochondrial injury and alleviated hypoxia-induced fission Nrf2-dependently without affecting the expression of key effector proteins (Drp1, Fis1, Mfn1/2 and Opa1), while high concentrations (≥10 μM SFN) aggravated hypoxia-induced mitochondrial injury, fission and Drp1 expression, and inhibited Mfn1/2 expression. These findings suggest that SFN biphasically affected the angiogenic capacity of hypoxia challenged HUVECs potentially mechanisms involving an integrated modulation of Nrf2 and mitochondrial dynamics.
萝卜硫素(SFN)是一种异硫氰酸盐(ITC),来源于十字花科蔬菜中的葡萄糖硫苷,萝卜硫苷。很少有研究关注 SFN 在缺氧条件下对血管生成的作用。本研究采用培养的人脐静脉内皮细胞(HUVEC)在缺氧条件下,研究 SFN 对血管生成的作用及其潜在机制,包括 Nrf2 和线粒体动力学的作用。低剂量(1.25-5 μM)SFN 可增加缺氧诱导的 HUVEC 迁移和管形成,并减轻缺氧诱导的增殖迟缓,但高剂量(≥10 μM)则表现出相反的作用。在缺氧条件下,SFN 处理可上调 Nrf2 和血红素加氧酶-1 的表达。Nrf2 敲低可阻断 SFN(2.5 μM)诱导的管形成,并进一步增强 SFN(10 μM)对血管生成的抑制作用。同时,线粒体功能、形态和动态相关蛋白的表达表明,低剂量 SFN 可防止缺氧引起的线粒体损伤,并依赖于 Nrf2 减轻缺氧诱导的分裂,而不影响关键效应蛋白(Drp1、Fis1、Mfn1/2 和 Opa1)的表达,而高浓度(≥10 μM SFN)则加重缺氧引起的线粒体损伤、分裂和 Drp1 表达,并抑制 Mfn1/2 的表达。这些发现表明,SFN 对缺氧挑战的 HUVEC 血管生成能力呈双相影响,其潜在机制可能涉及 Nrf2 和线粒体动力学的综合调节。