Suppr超能文献

相似文献

1
Efficiently identifying individuals at high risk for treatment resistance in major depressive disorder using electronic health records.
J Affect Disord. 2022 Jun 1;306:254-259. doi: 10.1016/j.jad.2022.02.046. Epub 2022 Feb 16.
4
Assessment of a Prediction Model for Antidepressant Treatment Stability Using Supervised Topic Models.
JAMA Netw Open. 2020 May 1;3(5):e205308. doi: 10.1001/jamanetworkopen.2020.5308.
7
A clinical approach to treatment resistance in depressed patients: What to do when the usual treatments don't work well enough?
World J Biol Psychiatry. 2021 Sep;22(7):483-494. doi: 10.1080/15622975.2020.1851052. Epub 2020 Dec 8.
8
Understanding the genetic aspects of resistance to antidepressants treatment.
Eur Rev Med Pharmacol Sci. 2020 Jul;24(14):7784-7795. doi: 10.26355/eurrev_202007_22281.
9
Predicting treatment response using EEG in major depressive disorder: A machine-learning meta-analysis.
Transl Psychiatry. 2022 Aug 12;12(1):332. doi: 10.1038/s41398-022-02064-z.

引用本文的文献

2
Exploring depression treatment response by using polygenic risk scoring across diverse populations.
Am J Hum Genet. 2025 Aug 7;112(8):1877-1891. doi: 10.1016/j.ajhg.2025.06.003. Epub 2025 Jun 27.
3
Clinical associations with treatment resistance in depression: An electronic health record study.
Psychiatry Res. 2024 Dec;342:116203. doi: 10.1016/j.psychres.2024.116203. Epub 2024 Sep 16.
5
Genome-Wide Association Study of Treatment-Resistant Depression: Shared Biology With Metabolic Traits.
Am J Psychiatry. 2024 Jul 1;181(7):608-619. doi: 10.1176/appi.ajp.20230247. Epub 2024 May 15.
6
How Real-World Data Can Facilitate the Development of Precision Medicine Treatment in Psychiatry.
Biol Psychiatry. 2024 Oct 1;96(7):543-551. doi: 10.1016/j.biopsych.2024.01.001. Epub 2024 Jan 5.
7
Dimensional clinical phenotyping using brain donor medical records: RDoC profiling is associated with Alzheimer's disease neuropathology.
Alzheimers Dement (Amst). 2023 Sep 22;15(3):e12464. doi: 10.1002/dad2.12464. eCollection 2023 Jul-Sep.

本文引用的文献

1
Precision Dosing: A Clinical and Public Health Imperative.
JAMA. 2021 Apr 20;325(15):1505-1506. doi: 10.1001/jama.2021.1004.
2
Bi-directional association between depression and HF: An electronic health records-based cohort study.
J Comorb. 2020 Dec 24;10:2235042X20984059. doi: 10.1177/2235042X20984059. eCollection 2020 Jan-Dec.
5
Relative effectiveness of augmentation treatments for treatment-resistant depression: a systematic review and network meta-analysis.
Int Rev Psychiatry. 2020 Aug-Sep;32(5-6):477-490. doi: 10.1080/09540261.2020.1765748. Epub 2020 Jun 5.
6
Predicting treatment dropout after antidepressant initiation.
Transl Psychiatry. 2020 Feb 6;10(1):60. doi: 10.1038/s41398-020-0716-y.
7
Burden of treatment-resistant depression in Medicare: A retrospective claims database analysis.
PLoS One. 2019 Oct 10;14(10):e0223255. doi: 10.1371/journal.pone.0223255. eCollection 2019.
9
Can electronic health records revive central nervous system clinical trials?
Mol Psychiatry. 2019 Aug;24(8):1096-1098. doi: 10.1038/s41380-018-0278-z.
10
Predictive modeling of treatment resistant depression using data from STAR*D and an independent clinical study.
PLoS One. 2018 Jun 7;13(6):e0197268. doi: 10.1371/journal.pone.0197268. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验