Suppr超能文献

在真实环境中,临床和人口统计学特征能在多大程度上预测治疗抵抗性重度抑郁症患者的患者健康问卷-9 评分?

How well do clinical and demographic characteristics predict Patient Health Questionnaire-9 scores among patients with treatment-resistant major depressive disorder in a real-world setting?

机构信息

Janssen Scientific Affairs, LLC, Titusville, NJ, USA.

Janssen Research & Development, LLC, Titusville, NJ, USA.

出版信息

Brain Behav. 2021 Feb;11(2):e02000. doi: 10.1002/brb3.2000. Epub 2021 Jan 5.

Abstract

OBJECTIVES

To create and validate a model to predict depression symptom severity among patients with treatment-resistant depression (TRD) using commonly recorded variables within medical claims databases.

METHODS

Adults with TRD (here defined as > 2 antidepressant treatments in an episode, suggestive of nonresponse) and ≥ 1 Patient Health Questionnaire (PHQ)-9 record on or after the index TRD date were identified (2013-2018) in Decision Resource Group's Real World Data Repository, which links an electronic health record database to a medical claims database. A total of 116 clinical/demographic variables were utilized as predictors of the study outcome of depression symptom severity, which was measured by PHQ-9 total score category (score: 0-9 = none to mild, 10-14 = moderate, 15-27 = moderately severe to severe). A random forest approach was applied to develop and validate the predictive model.

RESULTS

Among 5,356 PHQ-9 scores in the study population, the mean (standard deviation) PHQ-9 score was 10.1 (7.2). The model yielded an accuracy of 62.7%. For each predicted depression symptom severity category, the mean observed scores (8.0, 12.2, and 16.2) fell within the appropriate range.

CONCLUSIONS

While there is room for improvement in its accuracy, the use of a machine learning tool that predicts depression symptom severity of patients with TRD can potentially have wide population-level applications. Healthcare systems and payers can build upon this groundwork and use the variables identified and the predictive modeling approach to create an algorithm specific to their population.

摘要

目的

利用医疗索赔数据库中常见的记录变量,创建并验证一个预测治疗抵抗性抑郁症(TRD)患者抑郁症状严重程度的模型。

方法

在 Decision Resource Group 的真实世界数据资源库(该资源库将电子健康记录数据库与医疗索赔数据库相链接)中,确定了患有 TRD(此处定义为在一个发作中接受>2 种抗抑郁治疗,提示无反应)且在索引 TRD 日期后至少有 1 次 PHQ-9 记录的成年人(2013-2018 年)。共利用 116 个临床/人口统计学变量作为预测研究结局(抑郁症状严重程度,通过 PHQ-9 总分类别衡量:得分 0-9=无至轻度,10-14=中度,15-27=中重度至重度)的指标。采用随机森林方法建立和验证预测模型。

结果

在研究人群的 5356 个 PHQ-9 评分中,平均(标准差)PHQ-9 评分为 10.1(7.2)。模型的准确率为 62.7%。对于每个预测的抑郁症状严重程度类别,观察到的平均得分(8.0、12.2 和 16.2)均在适当范围内。

结论

尽管其准确性还有待提高,但使用预测 TRD 患者抑郁症状严重程度的机器学习工具可能具有广泛的人群应用。医疗保健系统和支付方可以在此基础上进行构建,并使用已确定的变量和预测建模方法为其人群创建特定的算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b953/7882175/37616f74a86a/BRB3-11-e02000-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验