Luciw Nicholas J, Shirzadi Zahra, Black Sandra E, Goubran Maged, MacIntosh Bradley J
Hurvitz Brain Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.
Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Magn Reson Med. 2022 Jul;88(1):406-417. doi: 10.1002/mrm.29193. Epub 2022 Feb 19.
Develop and evaluate a deep learning approach to estimate cerebral blood flow (CBF) and arterial transit time (ATT) from multiple post-labeling delay (PLD) ASL MRI.
ASL MRI were acquired with 6 PLDs on a 1.5T or 3T GE system in adults with and without cognitive impairment (N = 99). Voxel-level CBF and ATT maps were quantified by training models with distinct convolutional neural network architectures: (1) convolutional neural network (CNN) and (2) U-Net. Models were trained and compared via 5-fold cross validation. Performance was evaluated using mean absolute error (MAE). Model outputs were trained on and compared against a reference ASL model fitting after data cleaning. Minimally processed ASL data served as another benchmark. Model output uncertainty was estimated using Monte Carlo dropout. The better-performing neural network was subsequently re-trained on inputs with missing PLDs to investigate generalizability to different PLD schedules.
Relative to the CNN, the U-Net yielded lower MAE on training data. On test data, the U-Net MAE was 8.4 ± 1.4 mL/100 g/min for CBF and 0.22 ± 0.09 s for ATT. A significant association was observed between MAE and Monte Carlo dropout-based uncertainty estimates. Neural network performance remained stable despite systematically reducing the number of input images (i.e., up to 3 missing PLD images). Mean processing time was 10.77 s for the U-Net neural network compared to 10 min 41 s for the reference pipeline.
It is feasible to generate CBF and ATT maps from 1.5T and 3T multi-PLD ASL MRI with a fast deep learning image-generation approach.
开发并评估一种深度学习方法,用于从多个标记后延迟(PLD)的动脉自旋标记(ASL)磁共振成像(MRI)中估计脑血流量(CBF)和动脉通过时间(ATT)。
在1.5T或3T通用电气系统上,对有和没有认知障碍的成年人(N = 99)进行6个PLD的ASL MRI扫描。通过使用不同卷积神经网络架构的训练模型,对体素级CBF和ATT图进行量化:(1)卷积神经网络(CNN)和(2)U-Net。通过5折交叉验证对模型进行训练和比较。使用平均绝对误差(MAE)评估性能。在数据清理后,模型输出在参考ASL模型拟合上进行训练并与之比较。经过最小处理的ASL数据用作另一个基准。使用蒙特卡洛随机失活估计模型输出不确定性。随后,在缺少PLD的输入上对性能更好的神经网络进行重新训练,以研究其对不同PLD时间表的通用性。
相对于CNN,U-Net在训练数据上的MAE更低。在测试数据上,U-Net对CBF的MAE为8.4±1.4 mL/100 g/min,对ATT的MAE为0.22±0.09 s。在MAE和基于蒙特卡洛随机失活的不确定性估计之间观察到显著关联。尽管系统地减少了输入图像的数量(即多达3个缺失的PLD图像),神经网络的性能仍然保持稳定。U-Net神经网络的平均处理时间为10.77秒,而参考管道的平均处理时间为10分41秒。
使用快速深度学习图像生成方法从1.5T和3T多PLD的ASL MRI生成CBF和ATT图是可行的。