Yu Yaoyao, Xia Tianyi, Tan Zhouli, Xia Huwei, He Shenping, Sun Han, Wang Xifan, Song Haolan, Chen Weijian
Radiology Imaging Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China.
Front Neurol. 2022 Feb 4;13:800614. doi: 10.3389/fneur.2022.800614. eCollection 2022.
To investigate the predictors of stroke-associated pneumonia (SAP) and poor functional outcome in patients with hyperacute cerebral infarction (HCI) by combining clinical factors, laboratory tests and neuroimaging features.
We included 205 patients with HCI from November 2018 to December 2019. The diagnostic criterion for SAP was occurrence within 7 days of the onset of stroke. Poor outcome was defined as a functional outcome based on a 3-months MRS score >3. The relationship of demographic, laboratory and neuroimaging variables with SAP and poor outcome was investigated using univariate and multivariate analyses.
Fifty seven (27.8%) patients were diagnosed with SAP and 40 (19.5%) developed poor outcomes. ADS score (OR = 1.284; 95% CI: 1.048-1.574; = 0.016), previous stroke (OR = 2.630; 95% CI: 1.122-6.163; = 0.026), consciousness (OR = 2.945; 95% CI: 1.514-5.729; < 0.001), brain atrophy (OR = 1.427; 95% CI: 1.040-1.959; = 0.028), and core infarct volume (OR = 1.715; 95% CI: 1.163-2.528; = 0.006) were independently associated with the occurrence of SAP. Therefore, we combined these variables into a new SAP prediction model with the C-statistic of 0.84 (95% CI: 0.78-0.90). Fasting plasma glucose (OR = 1.404; 95% CI: 1.202-1.640; < 0.001), NIHSS score (OR = 1.088; 95% CI: 1.010-1.172; = 0.026), previous stroke (OR = 4.333; 95% CI: 1.645-11.418; = 0.003), SAP (OR = 3.420; 95% CI: 1.332-8.787; = 0.011), basal ganglia-dilated perivascular spaces (BG-dPVS) (OR = 2.124; 95% CI: 1.313-3.436; = 0.002), and core infarct volume (OR = 1.680; 95% CI: 1.166-2.420; = 0.005) were independently associated with poor outcome. The C-statistic of the outcome model was 0.87 (95% CI: 0.81-0.94). Furthermore, the SAP model significantly improved discrimination and net benefit more than the ADS scale, with a C-statistic of 0.76 (95% CI: 0.69-0.83).
After the addition of neuroimaging features, the models exhibit good differentiation and calibration for the prediction of the occurrence of SAP and the development of poor outcomes in HCI patients. The SAP model could better predict the SAP, representing a helpful and valid tool to obtain a net benefit compared with the ADS scale.
通过综合临床因素、实验室检查和神经影像学特征,研究超急性脑梗死(HCI)患者发生卒中相关性肺炎(SAP)及功能预后不良的预测因素。
纳入2018年11月至2019年12月的205例HCI患者。SAP的诊断标准为卒中发病7天内出现。预后不良定义为基于3个月改良Rankin量表(MRS)评分>3的功能预后。采用单因素和多因素分析研究人口统计学、实验室和神经影像学变量与SAP及预后不良的关系。
57例(27.8%)患者诊断为SAP,40例(19.5%)出现预后不良。年龄与性别差异评分(ADS评分)(比值比[OR]=1.284;95%置信区间[CI]:1.048-1.574;P=0.016)、既往卒中(OR=2.630;95%CI:1.122-6.163;P=0.026)、意识状态(OR=2.945;95%CI:1.514-5.729;P<0.001)、脑萎缩(OR=1.427;95%CI:1.040-1.959;P=0.028)和梗死核心体积(OR=1.715;95%CI:1.163-2.528;P=0.006)与SAP的发生独立相关。因此,我们将这些变量组合成一个新的SAP预测模型,C统计量为0.84(95%CI:0.78-0.90)。空腹血糖(OR=1.404;95%CI:1.202-1.640;P<0.001)、美国国立卫生研究院卒中量表(NIHSS)评分(OR=1.088;95%CI:1.010-1.172;P=0.026)、既往卒中(OR=4.333;95%CI:1.645-11.418;P=0.003)、SAP(OR=3.420;95%CI:1.332-8.787;P=0.011)、基底节区扩张的血管周围间隙(BG-dPVS)(OR=2.124;95%CI:1.313-3.436;P=0.002)和梗死核心体积(OR=1.680;95%CI:1.166-2.420;P=Q005)与预后不良独立相关。预后模型的C统计量为0.87(95%CI:0.81-0.94)。此外,与ADS量表相比,SAP模型在区分度和净效益方面有显著改善,C统计量为0.76(95%CI:0.69-0.83)。
加入神经影像学特征后,模型对HCI患者SAP的发生和预后不良的预测具有良好的区分度和校准度。与ADS量表相比,SAP模型能更好地预测SAP,是一个有助于获得净效益的有效工具。