Liu Xinyu, Huan Pin, Liu Baozhong
CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.
Front Cell Dev Biol. 2022 Feb 3;10:813741. doi: 10.3389/fcell.2022.813741. eCollection 2022.
The molecular mechanisms underlying larval shell development in mollusks remain largely elusive. We previously found evident filamentous actin (F-actin) aggregations in the developing shell field of the patellogastropod , indicating roles of actomyosin networks in the process. In the present study, we functionally characterized nonmuscle myosin II (NM II), the key molecule in actomyosin networks, in the larval shell development of . Immunostaining revealed general colocalization of phosphorylated NM II and F-actin in the shell field. When inhibiting the phosphorylation of NM II using the specific inhibitor blebbistatin in one- or 2-h periods during shell field morphogenesis (6-8 h post-fertilization, hpf), the larval shell plate was completely lost in the veliger larva (24 hpf). Scanning electron microscopy revealed that the nascent larval shell plate could not be developed in the manipulated larvae (10 hpf). Further investigations revealed that key events in shell field morphogenesis were inhibited by blebbistatin pulses, including invagination of the shell field and cell shape changes and cell rearrangements during shell field morphogenesis. These factors caused the changed morphology of the shell field, despite the roughly retained "rosette" organization. To explore whether the specification of related cells was affected by blebbistatin treatments, we investigated the expression of four potential shell formation genes (, , and ). The four genes did not show evident changes in expression level, indicating unaffected cell specification in the shell field, while the gene expression patterns showed variations according to the altered morphology of the shell field. Together, our results reveal that NM II contributes to the morphogenesis of the shell field and is crucial for the formation of the larval shell plate in . These results add to the knowledge of the mechanisms of molluskan shell development.
软体动物幼虫贝壳发育的分子机制在很大程度上仍然不清楚。我们之前在笠形腹足类动物发育中的贝壳区域发现了明显的丝状肌动蛋白(F-肌动蛋白)聚集,这表明肌动球蛋白网络在这个过程中发挥了作用。在本研究中,我们对肌动球蛋白网络中的关键分子非肌肉肌球蛋白II(NM II)在[具体物种]幼虫贝壳发育中的功能进行了表征。免疫染色显示磷酸化的NM II和F-肌动蛋白在贝壳区域普遍共定位。当在贝壳区域形态发生过程中(受精后6 - 8小时,hpf)使用特异性抑制剂blebbistatin在1小时或2小时内抑制NM II的磷酸化时,面盘幼虫(24 hpf)中的幼虫贝壳板完全消失。扫描电子显微镜显示,在经过处理的幼虫(10 hpf)中无法发育出新生的幼虫贝壳板。进一步的研究表明,blebbistatin脉冲抑制了贝壳区域形态发生中的关键事件,包括贝壳区域的内陷以及贝壳区域形态发生过程中的细胞形状变化和细胞重排。尽管大致保留了“玫瑰花结”组织,但这些因素导致了贝壳区域形态的改变。为了探究相关细胞的特化是否受到blebbistatin处理的影响,我们研究了四个潜在的贝壳形成基因([基因名称1]、[基因名称2]、[基因名称3]和[基因名称4])的表达。这四个基因的表达水平没有明显变化,表明贝壳区域的细胞特化未受影响,而基因表达模式根据贝壳区域形态的改变而有所变化。总之,我们的结果表明NM II有助于贝壳区域的形态发生,并且对[具体物种]中幼虫贝壳板的形成至关重要。这些结果增加了对软体动物贝壳发育机制的认识。