Ashfaq Muhammad, Tahir Muhammad Nawaz, Muhammad Shabbir, Munawar Khurram Shahzad, Ali Saqib, Ahmed Gulzar, Al-Sehemi Abdullah G, Alarfaji Saleh S, Ibraheem Khan Muhammad Ehtisham
Department of Physics, University of Sargodha, Sargodha 40100, Pakistan.
Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.
ACS Omega. 2022 Feb 2;7(6):5217-5230. doi: 10.1021/acsomega.1c06325. eCollection 2022 Feb 15.
Two imine compounds named as ()-2-(((3,4-dichlorophenyl)imino)methyl)phenol and ()-4-(((2,4-dimethylphenyl)imino)methyl)phenol are synthesized, and their crystal structures are verified using the single-crystal X-ray diffraction (XRD) technique. The crystal structures of the compounds are compared with the closely related crystal structures using the Cambridge Structural Database (CSD). The crystal packing in terms of intermolecular interactions is fully explored by Hirshfeld surface analysis. Void analysis is carried out for both compounds to check the strength of the crystal packing. Furthermore, a state-of-the-art dual computational technique consisting of quantum chemical and molecular docking methods is used to shed light on the molecular structure, optoelectronic properties, and bioactivity of indigenously synthesized compounds. The optimized molecular geometries are compared with their counterpart experimental values. Based on previous reports of biofunctions of the indigenously synthesized imine derivatives, they are explored for their potential inhibition properties against two very crucial proteins (main protease (M) and nonstructural protein 9 (NSP9)) of SARS-CoV-2. The calculated interaction energy values of and with M are found to be -6.3 and -6.6 kcal/mol, respectively, and for NSP9, the calculated interaction energy value is found to be -6.5 kcal/mol. We believe that the current combined study through experiments and computational techniques will not only pique the interest of the broad scientific community but also evoke interest in their further and investigations.
合成了两种名为()-2-(((3,4-二氯苯基)亚氨基)甲基)苯酚和()-4-(((2,4-二甲基苯基)亚氨基)甲基)苯酚的亚胺化合物,并使用单晶X射线衍射(XRD)技术验证了它们的晶体结构。使用剑桥结构数据库(CSD)将这些化合物的晶体结构与密切相关的晶体结构进行比较。通过 Hirshfeld 表面分析充分探索了分子间相互作用方面的晶体堆积。对这两种化合物都进行了空隙分析,以检查晶体堆积的强度。此外,还使用了一种由量子化学和分子对接方法组成的先进双重计算技术,以阐明本地合成化合物的分子结构、光电性质和生物活性。将优化后的分子几何结构与其对应的实验值进行比较。基于先前关于本地合成亚胺衍生物生物功能的报道,研究了它们对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的两种非常关键的蛋白质(主要蛋白酶(M)和非结构蛋白9(NSP9))的潜在抑制特性。发现与M的计算相互作用能值分别为-6.3和-6.6千卡/摩尔,对于NSP9,计算得到的相互作用能值为-6.5千卡/摩尔。我们相信,目前通过实验和计算技术进行的联合研究不仅会引起广大科学界的兴趣,还会激发对其进一步研究的兴趣。