Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA.
Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA.
J Biol Chem. 2022 Apr;298(4):101752. doi: 10.1016/j.jbc.2022.101752. Epub 2022 Feb 19.
RNA polymerase (RNAP) binding protein A (RbpA) is essential for mycobacterial viability and regulates transcription initiation by increasing the stability of the RNAP-promoter open complex (RP). RbpA consists of four domains: an N-terminal tail (NTT), a core domain (CD), a basic linker, and a sigma interaction domain. We have previously shown that truncation of the RbpA NTT and CD increases RP stabilization by RbpA, implying that these domains inhibit this activity of RbpA. Previously published structural studies showed that the NTT and CD are positioned near multiple RNAP-σ holoenzyme functional domains and predict that the RbpA NTT contributes specific amino acids to the binding site of the antibiotic fidaxomicin (Fdx), which inhibits the formation of the RP complex. Furthermore, deletion of the NTT results in decreased Mycobacterium smegmatis sensitivity to Fdx, but whether this is caused by a loss in Fdx binding is unknown. We generated a panel of rbpA mutants and found that the RbpA NTT residues predicted to directly interact with Fdx are partially responsible for RbpA-dependent Fdx activity in vitro, while multiple additional RbpA domains contribute to Fdx activity in vivo. Specifically, our results suggest that the RP-stabilizing activity of RbpA decreases Fdx activity in vivo. In support of the association between RP stability and Fdx activity, we find that another factor that promotes RP stability in bacteria, CarD, also impacts to Fdx sensitivity. Our findings highlight how RbpA and other factors may influence RNAP dynamics to affect Fdx sensitivity.
RNA 聚合酶 (RNAP) 结合蛋白 A (RbpA) 是分枝杆菌生存所必需的,它通过增加 RNAP-启动子开放复合物 (RP) 的稳定性来调节转录起始。RbpA 由四个结构域组成:N 端尾巴 (NTT)、核心结构域 (CD)、碱性连接子和 σ 相互作用结构域。我们之前已经表明,RbpA NTT 和 CD 的截断增加了 RbpA 对 RP 的稳定性,这意味着这些结构域抑制了 RbpA 的这种活性。先前发表的结构研究表明,NTT 和 CD 位于多个 RNAP-σ 全酶功能结构域附近,并预测 RbpA NTT 为抗生素 fidaxomicin (Fdx) 的结合位点贡献了特定的氨基酸,Fdx 抑制了 RP 复合物的形成。此外,NTT 的缺失导致耻垢分枝杆菌对 Fdx 的敏感性降低,但这是否是由于 Fdx 结合的丧失尚不清楚。我们生成了一组 rbpA 突变体,并发现与 Fdx 直接相互作用的 RbpA NTT 残基部分负责 RbpA 依赖性 Fdx 体外活性,而多个额外的 RbpA 结构域有助于 Fdx 体内活性。具体而言,我们的结果表明,RbpA 的 RP 稳定活性降低了 Fdx 在体内的活性。为了支持 RP 稳定性和 Fdx 活性之间的关联,我们发现另一种在细菌中促进 RP 稳定性的因子 CarD,也会影响 Fdx 的敏感性。我们的研究结果强调了 RbpA 和其他因子如何影响 RNAP 动力学从而影响 Fdx 敏感性。