Suppr超能文献

Macroalgal morphology mediates microplastic accumulation on thallus and in sediments.

作者信息

Ng Ka Long, Suk Ki Fung, Cheung Kam Wing, Shek Roden Hon Tsung, Chan Sidney Man Ngai, Tam Nora Fung Yee, Cheung Siu Gin, Fang James Kar-Hei, Lo Hoi Shing

机构信息

Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.

Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong.

出版信息

Sci Total Environ. 2022 Jun 15;825:153987. doi: 10.1016/j.scitotenv.2022.153987. Epub 2022 Feb 19.

Abstract

The accumulation process of microplastics (MPs) is a key to understanding their fate in the environment. However, there is limited information about the short-term accumulation of MPs on macrophytes. The ability of macrophyte to attenuate wave and reduce current velocity is potentially facilitating MPs deposition. We hypothesize that the macroalgae retain MPs with their morphologies (filamentous and non-filamentous) being one of the factors to govern retention. Our hypothesis was tested by field observation during the dry season in Hong Kong when the macroalgae communities were the most diverse. MPs per biomass, surface area, or interstitial volume were used to represent the abundances on macroalgae. We found that filamentous algae retained a 2.35 times higher number of MPs when compared with non-filamentous algae if unit per biomass was considered. Other units, however, showed insignificant differences in MPs abundances between algal morphologies. Fibre was the most dominant shape of MPs with no significant difference in their abundances between filamentous and non-filamentous algae, suggesting fibres were retained regardless of the algal morphologies. To further evaluate the potential accumulation in the environment, sediment samples were also collected under the algal mat and immediate vicinity (~50 cm) of the algal mat. We found that sediment collected under the vegetated area contained significantly higher MPs. This was 3.39 times higher than the unvegetated area. Sediment collected under/near filamentous algae retained much higher abundances of MPs than those of non-filamentous algae. Provided that the observed retention of MPs on macroalgae, we speculate macrophyte system is one of the short-term MPs accumulation hotspots where the temporal increase of MPs depends on the seasonality of macrophyte in a given region.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验