Suppr超能文献

软凝胶中平移机械冲击下空化核的形成及其韧脆形状转变。

Cavitation nucleation and its ductile-to-brittle shape transition in soft gels under translational mechanical impact.

机构信息

Mechanical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85281, United States.

Mechanical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85281, United States.

出版信息

Acta Biomater. 2022 Apr 1;142:160-173. doi: 10.1016/j.actbio.2022.02.017. Epub 2022 Feb 19.

Abstract

Cavitation bubbles in the human body, when subjected to impact, are being increasingly considered as a possible brain injury mechanism. However, the onset of cavitation and its complex dynamics in biological materials remain unclear. Our experimental results using soft gels as a tissue simulant show that the critical acceleration (a) at cavitation nucleation monotonically increases with increasing stiffness of gelatin A/B, while a for agarose and agar initially increases but is followed by a plateau or even decrease after stiffness reach to ∼100 kPa. Our image analyses of cavitation bubbles and theoretical work reveal that the observed trends in a are directly linked to how bubbles grow in each gel. Gelatin A/B, regardless of their stiffness, form a localized damaged zone (tens of nanometers) at the gel-bubble interface during bubble growth. In contrary, the damaged zone in agar/agarose becomes significantly larger (> 100 times) with increasing shear modulus, which triggers the transition from formation of a small, damaged zone to activation of crack propagation. STATEMENT OF SIGNIFICANCE: We have studied cavitation nucleation and bubble growth in four different types of soft gels (i.e., tissue simulants) under translational impact. The critical linear acceleration for cavitation nucleation has been measured in the simulants by utilizing a recently developed method that mimics acceleration profiles of typical head blunt events. Each gel type exhibits significantly different trends in the critical acceleration and bubble shape (e.g., A gel-specific sphere-to-saucer transition) with increasing gel stiffness. Our theoretical framework, based on the concepts of a damaged zone and crack propagation in each gel, explains underlying mechanisms of the experimental observations. Our in-depth studies shed light on potential links between traumatic brain injuries and cavitation bubbles induced by translational acceleration, the overlooked mechanism in the literature.

摘要

人体中的空化气泡在受到冲击时,正越来越被认为是一种可能的脑损伤机制。然而,生物材料中空化的起始及其复杂动力学仍不清楚。我们使用软凝胶作为组织模拟物的实验结果表明,空化核化的临界加速度(a)随着明胶 A/B 硬度的增加单调增加,而对于琼脂糖和琼脂,a 最初增加,但在达到约 100kPa 后,硬度会出现平台或甚至下降。我们对空化气泡的图像分析和理论工作表明,观察到的 a 趋势与气泡在每种凝胶中的生长方式直接相关。无论其硬度如何,明胶 A/B 在气泡生长过程中在凝胶-气泡界面处形成局部损伤区(几十纳米)。相比之下,琼脂/琼脂糖的损伤区随着剪切模量的增加而显著增大(>100 倍),这触发了从小的损伤区形成到裂纹扩展激活的转变。

意义陈述

我们研究了四种不同类型的软凝胶(即组织模拟物)在平移冲击下的空化核化和气泡生长。我们通过利用最近开发的方法模拟典型头部钝器事件的加速度曲线,在模拟物中测量了空化核化的临界线性加速度。随着凝胶硬度的增加,每种凝胶类型的临界加速度和气泡形状(例如,A 凝胶特有的球形到碟形转变)都表现出明显不同的趋势。我们的理论框架基于每个凝胶中损伤区和裂纹扩展的概念,解释了实验观察结果的潜在机制。我们的深入研究揭示了创伤性脑损伤与平移加速引起的空化气泡之间的潜在联系,这是文献中被忽视的机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验