School of Biological Sciences, University of Bristol, Bristol, United Kingdom.
NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Den Burg, Netherlands.
Elife. 2022 Feb 22;11:e66695. doi: 10.7554/eLife.66695.
Core gene phylogenies provide a window into early evolution, but different gene sets and analytical methods have yielded substantially different views of the tree of life. Trees inferred from a small set of universal core genes have typically supported a long branch separating the archaeal and bacterial domains. By contrast, recent analyses of a broader set of non-ribosomal genes have suggested that Archaea may be less divergent from Bacteria, and that estimates of inter-domain distance are inflated due to accelerated evolution of ribosomal proteins along the inter-domain branch. Resolving this debate is key to determining the diversity of the archaeal and bacterial domains, the shape of the tree of life, and our understanding of the early course of cellular evolution. Here, we investigate the evolutionary history of the marker genes key to the debate. We show that estimates of a reduced Archaea-Bacteria (AB) branch length result from inter-domain gene transfers and hidden paralogy in the expanded marker gene set. By contrast, analysis of a broad range of manually curated marker gene datasets from an evenly sampled set of 700 Archaea and Bacteria reveals that current methods likely underestimate the AB branch length due to substitutional saturation and poor model fit; that the best-performing phylogenetic markers tend to support longer inter-domain branch lengths; and that the AB branch lengths of ribosomal and non-ribosomal marker genes are statistically indistinguishable. Furthermore, our phylogeny inferred from the 27 highest-ranked marker genes recovers a clade of DPANN at the base of the Archaea and places the bacterial Candidate Phyla Radiation (CPR) within Bacteria as the sister group to the Chloroflexota.
核心基因系统发育为早期进化提供了一个窗口,但不同的基因集和分析方法对生命之树的看法有很大的不同。从一小部分通用核心基因推断出的树通常支持一个将古菌和细菌域分开的长分支。相比之下,最近对更广泛的非核糖体基因的分析表明,古菌可能与细菌的差异较小,并且由于核糖体蛋白在域间分支上的加速进化,域间距离的估计值被夸大了。解决这一争论对于确定古菌和细菌域的多样性、生命之树的形状以及我们对细胞早期进化过程的理解是至关重要的。在这里,我们研究了这场争论中关键的标记基因的进化历史。我们表明,减少的古菌-细菌 (AB) 分支长度的估计值是由于域间基因转移和扩展标记基因集中的隐藏旁系同源性造成的。相比之下,对来自 700 个古菌和细菌的均匀采样的广泛的手动整理的标记基因数据集的分析表明,当前的方法由于替代饱和和较差的模型拟合,可能低估了 AB 分支长度;表现最好的系统发育标记往往支持更长的域间分支长度;核糖体和非核糖体标记基因的 AB 分支长度在统计上是不可区分的。此外,我们从 27 个排名最高的标记基因推断出的系统发育树在古菌的底部恢复了 DPANN 类群,并将细菌候选门辐射 (CPR) 置于细菌中,作为 Chloroflexota 的姐妹群。