Suppr超能文献

触发工具以识别住院儿童中的药物不良事件:系统评价。

Trigger tools to identify adverse drug events in hospitalised children: A systematic review.

机构信息

Laboratoire de biométrie et biologie évolutive, CNRS, UMR 5558, université de Claude-Bernard Lyon 1, 8, rue Guillaume-Paradin, Bât B 69008, 69008 Lyon, France.

Laboratoire de biométrie et biologie évolutive, CNRS, UMR 5558, université de Claude-Bernard Lyon 1, 8, rue Guillaume-Paradin, Bât B 69008, 69008 Lyon, France; Centre d'investigation clinique, Inserm CIC1407, EPICIME department of clinical epdiemiology, Hospices civils de Lyon, 69500 Bron, France.

出版信息

Therapie. 2022 Sep-Oct;77(5):527-539. doi: 10.1016/j.therap.2022.01.015. Epub 2022 Jan 31.

Abstract

AIMS

To identify all available trigger tools applicable to the pediatric population in hospital settings to detect adverse drug events (ADEs) and to describe their performances by positive predictive value (PPV).

METHODS

PubMed® was searched until December 2021. The reference sections were also consulted for new articles. Studies were selected when they used one or more triggers to identify AEs and used data on pediatric inpatient settings. Studies mentioning triggers related to AEs that were only caused by care procedures were excluded. Only triggers related to ADEs were included. PPVs of triggers were reported. Mean PPVs were calculated for multi-study triggers. The interest of each trigger in a real-time detection system was assessed.

RESULTS

Thirty studies were included. A total of 271 unique triggers were identified, 179 of which were related to drug-induced harms. Among them, 68 could be used for prevention of ADEs, 80 for verification and 31 for reporting. Nineteen triggers (11%) had a mean PPV between 50% and 100%, including 5 that had a 100% PPV.

CONCLUSION

The performances of individual triggers need to be more adequately studied. The detection of ADEs through computerized triggers and/or real-time detection systems remains an emerging field, very much needed in children especially, due to frequent off-label use.

摘要

目的

确定所有可用于医院环境中儿科人群的触发工具,以检测药物不良事件(ADE),并通过阳性预测值(PPV)描述其性能。

方法

检索 PubMed®,截至 2021 年 12 月。还查阅了参考文献部分以获取新文章。当研究使用一个或多个触发器来识别 AE 并使用儿科住院患者的数据时,将其纳入研究。排除仅与护理程序引起的 AE 相关的触发器的研究。仅纳入与 ADE 相关的触发器。报告了触发器的 PPV。为多研究触发器计算了平均 PPV。评估了每个触发器在实时检测系统中的作用。

结果

共纳入 30 项研究。共确定了 271 个独特的触发器,其中 179 个与药物引起的伤害有关。其中,68 个可用于预防 ADE,80 个用于验证,31 个用于报告。19 个触发器(11%)的平均 PPV 在 50%至 100%之间,其中 5 个具有 100%的 PPV。

结论

需要更充分地研究单个触发器的性能。通过计算机触发和/或实时检测系统检测 ADE 是一个新兴领域,尤其是在儿童中非常需要,因为经常出现超说明书用药。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验