IEEE Trans Med Imaging. 2022 Aug;41(8):2033-2047. doi: 10.1109/TMI.2022.3153849. Epub 2022 Aug 1.
Fast and accurate MRI image reconstruction from undersampled data is crucial in clinical practice. Deep learning based reconstruction methods have shown promising advances in recent years. However, recovering fine details from undersampled data is still challenging. In this paper, we introduce a novel deep learning based method, Pyramid Convolutional RNN (PC-RNN), to reconstruct images from multiple scales. Based on the formulation of MRI reconstruction as an inverse problem, we design the PC-RNN model with three convolutional RNN (ConvRNN) modules to iteratively learn the features in multiple scales. Each ConvRNN module reconstructs images at different scales and the reconstructed images are combined by a final CNN module in a pyramid fashion. The multi-scale ConvRNN modules learn a coarse-to-fine image reconstruction. Unlike other common reconstruction methods for parallel imaging, PC-RNN does not employ coil sensitive maps for multi-coil data and directly model the multiple coils as multi-channel inputs. The coil compression technique is applied to standardize data with various coil numbers, leading to more efficient training. We evaluate our model on the fastMRI knee and brain datasets and the results show that the proposed model outperforms other methods and can recover more details. The proposed method is one of the winner solutions in the 2019 fastMRI competition.
从欠采样数据中快速准确地重建 MRI 图像在临床实践中至关重要。基于深度学习的重建方法近年来取得了有希望的进展。然而,从欠采样数据中恢复精细细节仍然具有挑战性。在本文中,我们引入了一种新颖的基于深度学习的方法,即金字塔卷积递归神经网络(PC-RNN),从多个尺度重建图像。基于 MRI 重建作为反问题的公式,我们设计了具有三个卷积递归神经网络(ConvRNN)模块的 PC-RNN 模型,以迭代地学习多个尺度的特征。每个 ConvRNN 模块在不同的尺度上重建图像,重建的图像通过最终的 CNN 模块以金字塔方式组合。多尺度 ConvRNN 模块学习从粗到精的图像重建。与其他并行成像的常见重建方法不同,PC-RNN 不为多线圈数据使用线圈敏感图,而是直接将多个线圈建模为多通道输入。线圈压缩技术应用于对具有不同线圈数量的数据进行标准化,从而实现更高效的训练。我们在 fastMRI 膝盖和大脑数据集上评估了我们的模型,结果表明,所提出的模型优于其他方法,可以恢复更多细节。该方法是 2019 年 fastMRI 竞赛的获奖解决方案之一。