Suppr超能文献

NPB-REC:一种基于非参数贝叶斯深度学习的欠采样 MRI 重建方法,具有不确定性估计。

NPB-REC: A non-parametric Bayesian deep-learning approach for undersampled MRI reconstruction with uncertainty estimation.

机构信息

The Interdisciplinary program in Applied Mathematics, Faculty of Mathematics, Technion - Israel Institute of Technology, Israel.

The Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Israel.

出版信息

Artif Intell Med. 2024 Mar;149:102798. doi: 10.1016/j.artmed.2024.102798. Epub 2024 Feb 5.

Abstract

The ability to reconstruct high-quality images from undersampled MRI data is vital in improving MRI temporal resolution and reducing acquisition times. Deep learning methods have been proposed for this task, but the lack of verified methods to quantify the uncertainty in the reconstructed images hampered clinical applicability. We introduce "NPB-REC", a non-parametric fully Bayesian framework, for MRI reconstruction from undersampled data with uncertainty estimation. We use Stochastic Gradient Langevin Dynamics during training to characterize the posterior distribution of the network parameters. This enables us to both improve the quality of the reconstructed images and quantify the uncertainty in the reconstructed images. We demonstrate the efficacy of our approach on a multi-coil MRI dataset from the fastMRI challenge and compare it to the baseline End-to-End Variational Network (E2E-VarNet). Our approach outperforms the baseline in terms of reconstruction accuracy by means of PSNR and SSIM (34.55, 0.908 vs. 33.08, 0.897, p<0.01, acceleration rate R=8) and provides uncertainty measures that correlate better with the reconstruction error (Pearson correlation, R=0.94 vs. R=0.91). Additionally, our approach exhibits better generalization capabilities against anatomical distribution shifts (PSNR and SSIM of 32.38, 0.849 vs. 31.63, 0.836, p<0.01, training on brain data, inference on knee data, acceleration rate R=8). NPB-REC has the potential to facilitate the safe utilization of deep learning-based methods for MRI reconstruction from undersampled data. Code and trained models are available at https://github.com/samahkh/NPB-REC.

摘要

从欠采样 MRI 数据中重建高质量图像的能力对于提高 MRI 的时间分辨率和减少采集时间至关重要。已经提出了深度学习方法来实现这一任务,但缺乏验证方法来量化重建图像的不确定性,这阻碍了其临床应用。我们引入了“NPB-REC”,这是一种用于从欠采样数据中进行 MRI 重建并进行不确定性估计的非参数全贝叶斯框架。我们在训练过程中使用随机梯度 Langevin 动力学来描述网络参数的后验分布。这使我们能够提高重建图像的质量,并量化重建图像的不确定性。我们在 fastMRI 挑战赛的多线圈 MRI 数据集上展示了我们方法的有效性,并将其与基线端到端变分网络(E2E-VarNet)进行了比较。我们的方法在重建准确性方面优于基线,其 PSNR 和 SSIM 分别为 34.55 和 0.908,而 E2E-VarNet 分别为 33.08 和 0.897(p<0.01,加速率 R=8),并提供了与重建误差相关性更好的不确定性度量(皮尔逊相关系数,R=0.94 与 R=0.91)。此外,我们的方法在对抗解剖分布偏移方面具有更好的泛化能力(PSNR 和 SSIM 分别为 32.38 和 0.849,E2E-VarNet 分别为 31.63 和 0.836,p<0.01,在脑数据上进行训练,在膝盖数据上进行推断,加速率 R=8)。NPB-REC 有可能促进安全地利用基于深度学习的方法从欠采样数据中进行 MRI 重建。代码和训练模型可在 https://github.com/samahkh/NPB-REC 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验