Couëdel L, Nosenko V
Physics and Engineering Physics Department, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada.
CNRS, Aix-Marseille Université, Laboratoire PIIM UMR 7345, 13397 Marseille cedex 20, France.
Phys Rev E. 2022 Jan;105(1-2):015210. doi: 10.1103/PhysRevE.105.015210.
In this article, the stability of a complex plasma monolayer levitating in the sheath of the powered electrode of an asymmetric capacitively coupled radio-frequency argon discharge is studied. Compared to earlier studies, a better integration of the experimental results and theory is achieved by operating with actual experimental control parameters such as the gas pressure and the discharge power. It is shown that for a given microparticle monolayer at a fixed discharge power there exist two threshold pressures: (i) above a specific pressure p_{cryst}, the monolayer always crystallizes; (ii) below a specific pressure p_{MCI}, the crystalline monolayer undergoes the mode-coupling instability and the two-dimensional complex plasma crystal melts. In between p_{MCI} and p_{cryst}, the microparticle monolayer can be either in the fluid phase or the crystal phase: when increasing the pressure from below p_{MCI}, the monolayer remains in the fluid phase until it reaches p_{cryst} at which it recrystallizes; when decreasing the pressure from above p_{cryst}, the monolayer remains in the crystalline phase until it reaches p_{MCI} at which the mode-coupling instability is triggered and the crystal melts. A simple self-consistent sheath model is used to calculate the rf sheath profile, the microparticle charges, and the microparticle resonance frequency as a function of power and background argon pressure. Combined with calculation of the lattice modes the main trends of p_{MCI} as a function of power and background argon pressure are recovered. The threshold of the mode-coupling instability in the crystalline phase is dominated by the crossing of the longitudinal in-plane lattice mode and the out-of plane lattice mode induced by the change of the sheath profile. Ion wakes are shown to have a significant effect too.
在本文中,研究了悬浮在非对称电容耦合射频氩放电功率电极鞘层中的复杂等离子体单层的稳定性。与早期研究相比,通过使用气体压力和放电功率等实际实验控制参数进行操作,实现了实验结果与理论的更好整合。结果表明,对于给定的微粒单层,在固定放电功率下存在两个阈值压力:(i)高于特定压力(p_{cryst})时,单层总是结晶;(ii)低于特定压力(p_{MCI})时,结晶单层会经历模式耦合不稳定性,二维复杂等离子体晶体熔化。在(p_{MCI})和(p_{cryst})之间,微粒单层可以处于流体相或晶体相:当从低于(p_{MCI})的压力开始增加时,单层保持在流体相,直到达到(p_{cryst})时重新结晶;当从高于(p_{cryst})的压力开始降低时,单层保持在结晶相,直到达到(p_{MCI})时触发模式耦合不稳定性且晶体熔化。使用一个简单的自洽鞘层模型来计算射频鞘层分布、微粒电荷以及作为功率和背景氩气压力函数的微粒共振频率。结合晶格模式的计算,恢复了(p_{MCI})作为功率和背景氩气压力函数的主要趋势。结晶相中模式耦合不稳定性的阈值主要由鞘层分布变化引起的纵向面内晶格模式和面外晶格模式的交叉决定。离子尾迹也显示出有显著影响。