Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
Biomedical Mathematics Group, Institute for Basic Science, Daejeon 34126, Republic of Korea.
Proc Natl Acad Sci U S A. 2022 Feb 22;119(8). doi: 10.1073/pnas.2113403119.
In metazoan organisms, circadian (∼24 h) rhythms are regulated by pacemaker neurons organized in a master-slave hierarchy. Although it is widely accepted that master pacemakers and slave oscillators generate rhythms via an identical negative feedback loop of transcription factor CLOCK (CLK) and repressor PERIOD (PER), their different roles imply heterogeneity in their molecular clockworks. Indeed, in , defective binding between CLK and PER disrupts molecular rhythms in the master pacemakers, small ventral lateral neurons (sLNs), but not in the slave oscillator, posterior dorsal neuron 1s (DN1s). Here, we develop a systematic and expandable approach that unbiasedly searches the source of the heterogeneity in molecular clockworks from time-series data. In combination with in vivo experiments, we find that sLNs exhibit higher synthesis and turnover of PER and lower CLK levels than DN1s. Importantly, light shift analysis reveals that due to such a distinct molecular clockwork, sLNs can obtain paradoxical characteristics as the master pacemaker, generating strong rhythms that are also flexibly adjustable to environmental changes. Our results identify the different characteristics of molecular clockworks of pacemaker neurons that underlie hierarchical multi-oscillator structure to ensure the rhythmic fitness of the organism.
在后生动物中,昼夜节律(约 24 小时)受生物钟神经元的调节,这些神经元组织成一个主从层次结构。尽管人们普遍认为主生物钟和从振荡器通过转录因子 CLOCK (CLK) 和抑制因子 PERIOD (PER) 的相同负反馈环产生节律,但它们的不同作用意味着它们的分子钟在分子水平上存在异质性。事实上,在果蝇中,CLK 和 PER 之间的结合缺陷破坏了主生物钟——小腹外侧神经元(sLNs)中的分子节律,但不破坏从振荡器——后背部神经元 1s(DN1s)中的分子节律。在这里,我们开发了一种系统的、可扩展的方法,可以从时间序列数据中无偏地寻找分子钟异质性的来源。结合体内实验,我们发现 sLNs 比 DN1s 表现出更高的 PER 合成和周转率,以及更低的 CLK 水平。重要的是,光移分析表明,由于这种独特的分子钟,sLNs 可以获得作为主生物钟的矛盾特征,产生强节律,并且还可以灵活地适应环境变化。我们的结果确定了主导神经元分子钟的不同特征,这些特征构成了分层多振荡器结构的基础,以确保生物体的节律适应性。