Urquiza-García Uriel, Molina Nacho, Halliday Karen J, Millar Andrew J
Centre for Engineering Biology and School of Biological Sciences, C. H. Waddington Building, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK.
Institute of Synthetic Biology, University of Düsseldorf, Düsseldorf, Germany.
Mol Syst Biol. 2025 Apr;21(4):361-389. doi: 10.1038/s44320-025-00086-5. Epub 2025 Feb 20.
Understanding the biochemistry behind whole-organism traits such as flowering time is a longstanding challenge, where mathematical models are critical. Very few models of plant gene circuits use the absolute units required for comparison to biochemical data. We refactor two detailed models of the plant circadian clock from relative to absolute units. Using absolute RNA quantification, a simple model predicted abundant clock protein levels in Arabidopsis thaliana, up to 100,000 proteins per cell. NanoLUC reporter protein fusions validated the predicted levels of clock proteins in vivo. Recalibrating the detailed models to these protein levels estimated their DNA-binding dissociation constants (K). We estimate the same K from multiple results in vitro, extending the method to any promoter sequence. The detailed models simulated the K range estimated from LUX DNA-binding in vitro but departed from the data for CCA1 binding, pointing to further circadian mechanisms. Our analytical and experimental methods should transfer to understand other plant gene regulatory networks, potentially including the natural sequence variation that contributes to evolutionary adaptation.
理解诸如开花时间等全生物体性状背后的生物化学机制是一项长期挑战,在这方面数学模型至关重要。植物基因回路的模型很少使用与生化数据进行比较所需的绝对单位。我们将植物生物钟的两个详细模型从相对单位重构为绝对单位。通过绝对RNA定量,一个简单模型预测了拟南芥中大量的生物钟蛋白水平,每个细胞高达100,000个蛋白。纳米荧光素酶报告蛋白融合在体内验证了生物钟蛋白的预测水平。将详细模型重新校准到这些蛋白水平,估计了它们的DNA结合解离常数(K)。我们从多个体外实验结果中估计出相同的K,将该方法扩展到任何启动子序列。详细模型模拟了从体外LUX DNA结合估计的K范围,但与CCA1结合的数据不同,这表明存在进一步的昼夜节律机制。我们的分析和实验方法应可用于理解其他植物基因调控网络,可能包括有助于进化适应的自然序列变异。