Suppr超能文献

开发和实施一个与电子健康记录链接的自动登记系统,用于急诊普通外科。

Development and implementation of an automated electronic health record-linked registry for emergency general surgery.

机构信息

From the Department of Surgery (Z.M.) and Department of Medicine (A.M.S.), UC San Diego; and UC San Diego School of Medicine (M.R.) and Department of Surgery (J.J.D., A.E.L.), Division of Trauma, Surgical Critical Care, Burns and Acute Care Surgery, UC San Diego School of Medicine, San Diego, California.

出版信息

J Trauma Acute Care Surg. 2022 Aug 1;93(2):273-279. doi: 10.1097/TA.0000000000003582. Epub 2022 Feb 22.

Abstract

INTRODUCTION

Despite adoption of the emergency general surgery (EGS) service by hospitals nationally, quality improvement (QI) and research for this patient population are challenging because of the lack of population-specific registries. Past efforts have been limited by difficulties in identifying EGS patients within institutions and labor-intensive approaches to data capture. Thus, we created an automated electronic health record (EHR)-linked registry for EGS.

METHODS

We built a registry within the Epic EHR at University of California San Diego for the EGS service. Existing EHR labels that identified patients seen by the EGS team were used to create our automated inclusion rules. Registry validation was performed using a retrospective cohort of EGS patients in a 30-month period and a 1-month prospective cohort. We created quality metrics that are updated and reported back to clinical teams in real time and obtained aggregate data to identify QI and research opportunities. A key metric tracked is clinic schedule rate, as we care that discontinuity postdischarge for the EGS population remains a challenge.

RESULTS

Our registry captured 1,992 patient encounters with 1,717 unique patients in the 30-month period. It had a false-positive EGS detection rate of 1.8%. In our 1-month prospective cohort, it had a false-positive EGS detection rate of 0% and sensitivity of 85%. For quality metrics analysis, we found that EGS patients who were seen as consults had significantly lower clinic schedule rates on discharge compared with those who were admitted to the EGS service (85% vs. 60.7%, p < 0.001).

CONCLUSION

An EHR-linked EGS registry can reliably conduct capture data automatically and support QI and research.

LEVEL OF EVIDENCE

Prognostic and epidemiological, level III.

摘要

简介

尽管全国的医院都采用了急症普通外科(EGS)服务,但由于缺乏针对特定人群的登记处,因此针对这一患者群体的质量改进(QI)和研究具有挑战性。过去的努力受到了在机构内识别 EGS 患者的困难以及数据采集的劳动密集型方法的限制。因此,我们为 EGS 创建了一个自动化的电子健康记录(EHR)链接注册表。

方法

我们在加利福尼亚大学圣地亚哥分校的 Epic EHR 中为 EGS 服务创建了一个注册表。现有的 EHR 标签用于识别 EGS 团队就诊的患者,这些标签被用来创建我们的自动纳入规则。使用 30 个月和 1 个月的回顾性队列对注册表进行了验证。我们创建了质量指标,并实时更新并报告给临床团队,并获得了汇总数据以确定 QI 和研究机会。跟踪的一个关键指标是诊所预约率,因为我们关心 EGS 人群在出院后的连续性仍然是一个挑战。

结果

我们的注册表在 30 个月的时间内捕获了 1992 次患者就诊,涉及 1717 名独特患者。它的 EGS 检测假阳性率为 1.8%。在我们为期 1 个月的前瞻性队列中,它的 EGS 检测假阳性率为 0%,敏感性为 85%。对于质量指标分析,我们发现作为咨询就诊的 EGS 患者与被收治到 EGS 服务的患者相比,出院时的诊所预约率明显更低(85%与 60.7%,p < 0.001)。

结论

EHR 链接的 EGS 注册表可以可靠地自动采集数据,并支持 QI 和研究。

证据水平

预后和流行病学,III 级。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验