Mullowney Michael W, Maltseva Natalia I, Endres Michael, Kim Youngchang, Joachimiak Andrzej, Crofts Terence S
Department of Chemistry, Northwestern Universitygrid.16753.36, Evanston, Illinois, USA.
Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois, USA.
Microbiol Spectr. 2022 Apr 27;10(2):e0013922. doi: 10.1128/spectrum.00139-22. Epub 2022 Feb 23.
Phylogenetically diverse bacteria can carry out chloramphenicol reduction, but only a single enzyme has been described that efficiently catalyzes this reaction, the NfsB nitroreductase from Haemophilus influenzae strain KW20. Here, we tested the hypothesis that some NfsB homologs function as housekeeping enzymes with the potential to become chloramphenicol resistance enzymes. We found that expression of H. influenzae and spp. genes, but not Pasteurella multocida , allows Escherichia coli to resist chloramphenicol by nitroreduction. Mass spectrometric analysis confirmed that purified H. influenzae and N. meningitides NfsB enzymes reduce chloramphenicol to amino-chloramphenicol, while kinetics analyses supported the hypothesis that chloramphenicol reduction is a secondary activity. We combined these findings with atomic resolution structures of multiple chloramphenicol-reducing NfsB enzymes to identify potential key substrate-binding pocket residues. Our work expands the chloramphenicol reductase family and provides mechanistic insights into how a housekeeping enzyme might confer antibiotic resistance. The question of how new enzyme activities evolve is of great biological interest and, in the context of antibiotic resistance, of great medical importance. Here, we have tested the hypothesis that new antibiotic resistance mechanisms may evolve from promiscuous housekeeping enzymes that have antibiotic modification side activities. Previous work identified a Haemophilus influenzae nitroreductase housekeeping enzyme that has the ability to give Escherichia coli resistance to the antibiotic chloramphenicol by nitroreduction. Herein, we extend this work to enzymes from other Haemophilus and strains to discover that expression of chloramphenicol reductases is sufficient to confer chloramphenicol resistance to Es. coli, confirming that chloramphenicol reductase activity is widespread across this nitroreductase family. By solving the high-resolution crystal structures of active chloramphenicol reductases, we identified residues important for this activity. Our work supports the hypothesis that housekeeping proteins possessing multiple activities can evolve into antibiotic resistance enzymes.
系统发育上多样的细菌能够进行氯霉素还原反应,但目前仅描述了一种能有效催化该反应的酶,即来自流感嗜血杆菌KW20菌株的NfsB硝基还原酶。在此,我们检验了这样一个假设:一些NfsB同源物作为管家酶发挥作用,有可能成为氯霉素抗性酶。我们发现,流感嗜血杆菌和其他物种的基因表达,但多杀巴斯德菌的基因表达不能,可使大肠杆菌通过硝基还原作用抵抗氯霉素。质谱分析证实,纯化的流感嗜血杆菌和脑膜炎奈瑟菌NfsB酶可将氯霉素还原为氨基氯霉素,而动力学分析支持了氯霉素还原是一种次要活性的假设。我们将这些发现与多种氯霉素还原NfsB酶的原子分辨率结构相结合,以确定潜在的关键底物结合口袋残基。我们的工作扩展了氯霉素还原酶家族,并提供了关于管家酶如何赋予抗生素抗性的机制性见解。新酶活性如何进化的问题具有重大的生物学意义,在抗生素抗性背景下,也具有重大的医学重要性。在此,我们检验了这样一个假设:新的抗生素抗性机制可能从具有抗生素修饰副活性滥交的管家酶进化而来。先前的工作鉴定出一种流感嗜血杆菌硝基还原酶管家酶,它能够通过硝基还原作用使大肠杆菌对氯霉素产生抗性。在此,我们将这项工作扩展到来自其他流感嗜血杆菌和其他菌株的酶,发现氯霉素还原酶基因的表达足以赋予大肠杆菌对氯霉素的抗性,证实氯霉素还原酶活性在这个硝基还原酶家族中广泛存在。通过解析活性氯霉素还原酶的高分辨率晶体结构,我们确定了对该活性重要的残基。我们的工作支持了具有多种活性的管家蛋白可进化为抗生素抗性酶的假设。