Wang Xiaoyao, Shi Benbing, Yang Hao, Guan Jingyuan, Liang Xu, Fan Chunyang, You Xinda, Wang Yanan, Zhang Zhe, Wu Hong, Cheng Tao, Zhang Runnan, Jiang Zhongyi
Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China.
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China.
Nat Commun. 2022 Feb 23;13(1):1020. doi: 10.1038/s41467-022-28643-8.
Ionic covalent organic framework membranes (iCOFMs) hold great promise in ion conduction-relevant applications because the high content and monodispersed ionic groups could afford superior ion conduction. The key to push the upper limit of ion conductivity is to maximize the ion exchange capacity (IEC). Here, we explore iCOFMs with a superhigh ion exchange capacity of 4.6 mmol g, using a dual-activation interfacial polymerization strategy. Fukui function is employed as a descriptor of monomer reactivity. We use Brønsted acid to activate aldehyde monomers in organic phase and Brønsted base to activate ionic amine monomers in water phase. After the dual-activation, the reaction between aldehyde monomer and amine monomer at the water-organic interface is significantly accelerated, leading to iCOFMs with high crystallinity. The resultant iCOFMs display a prominent proton conductivity up to 0.66 S cm, holding great promise in ion transport and ionic separation applications.
离子共价有机骨架膜(iCOFMs)在与离子传导相关的应用中具有巨大潜力,因为其高含量且单分散的离子基团能够提供优异的离子传导性能。提高离子电导率上限的关键在于最大化离子交换容量(IEC)。在此,我们采用双活化界面聚合策略,探索具有4.6 mmol g超高离子交换容量的iCOFMs。福井函数被用作单体反应活性的描述符。我们使用布朗斯特酸在有机相中活化醛单体,使用布朗斯特碱在水相中活化离子胺单体。双活化后,醛单体与胺单体在水-有机界面的反应显著加速,从而得到具有高结晶度的iCOFMs。所得的iCOFMs显示出高达0.66 S cm 的显著质子传导率,在离子传输和离子分离应用中具有巨大潜力。