Ortiz Andrés Felipe Herrera, Camacho Tatiana Cadavid, Vásquez Andrés Francisco, Del Castillo Herazo Valeria, Neira Juan Guillermo Arámbula, Yepes María Mónica, Camacho Eduard Cadavid
Radiology, Fundación Santa Fe de Bogotá, Bogotá, Colombia.
Universidad El Bosque, Bogotá, Colombia.
Eur J Radiol Open. 2022 Feb 7;9:100400. doi: 10.1016/j.ejro.2022.100400. eCollection 2022.
This study aims to determine if the presence of specific clinical and computed tomography (CT) patterns are associated with epidermal growth factor receptor (EGFR) mutation in patients with non-small cell lung cancer.
A systematic literature review and meta-analysis was carried out in 6 databases between January 2002 and July 2021. The relationship between clinical and CT patterns to detect EGFR mutation was measured and pooled using odds ratios (OR). These results were used to build several mathematical models to predict EGFR mutation.
34 retrospective diagnostic accuracy studies met the inclusion and exclusion criteria. The results showed that ground-glass opacities (GGO) have an OR of 1.86 (95%CI 1.34 -2.57), air bronchogram OR 1.60 (95%CI 1.38 - 1.85), vascular convergence OR 1.39 (95%CI 1.12 - 1.74), pleural retraction OR 1.99 (95%CI 1.72 - 2.31), spiculation OR 1.42 (95%CI 1.19 - 1.70), cavitation OR 0.70 (95%CI 0.57 - 0.86), early disease stage OR 1.58 (95%CI 1.14 - 2.18), non-smoker status OR 2.79 (95%CI 2.34 - 3.31), female gender OR 2.33 (95%CI 1.97 - 2.75). A mathematical model was built, including all clinical and CT patterns assessed, showing an area under the curve (AUC) of 0.81.
GGO, air bronchogram, vascular convergence, pleural retraction, spiculated margins, early disease stage, female gender, and non-smoking status are significant risk factors for EGFR mutation. At the same time, cavitation is a protective factor for EGFR mutation. The mathematical model built acts as a good predictor for EGFR mutation in patients with lung adenocarcinoma.
本研究旨在确定非小细胞肺癌患者中特定的临床和计算机断层扫描(CT)特征是否与表皮生长因子受体(EGFR)突变相关。
于2002年1月至2021年7月期间在6个数据库中进行了系统的文献综述和荟萃分析。使用比值比(OR)来衡量和汇总临床及CT特征与检测EGFR突变之间的关系。这些结果被用于构建多个数学模型以预测EGFR突变。
34项回顾性诊断准确性研究符合纳入和排除标准。结果显示,磨玻璃影(GGO)的OR为1.86(95%CI 1.34 - 2.57),空气支气管征的OR为1.60(95%CI 1.38 - 1.85),血管集束征的OR为1.39(95%CI 1.12 - 1.74),胸膜凹陷征的OR为1.99(95%CI 1.72 - 2.31),毛刺征的OR为1.42(95%CI 1.19 - 1.70),空洞形成的OR为0.70(95%CI 0.57 - 0.86),疾病早期阶段的OR为1.58(95%CI 1.14 - 2.18),非吸烟状态的OR为2.79(95%CI 2.34 - 3.31),女性性别的OR为2.33(95%CI 1.97 - 2.75)。构建了一个包含所有评估的临床和CT特征的数学模型,其曲线下面积(AUC)为0.81。
磨玻璃影、空气支气管征、血管集束征、胸膜凹陷征、毛刺状边缘、疾病早期阶段、女性性别和非吸烟状态是EGFR突变的重要危险因素。同时,空洞形成是EGFR突变的保护因素。所构建的数学模型可作为肺腺癌患者EGFR突变的良好预测指标。