Benítez-Andrades José Alberto, Alija-Pérez José-Manuel, Vidal Maria-Esther, Pastor-Vargas Rafael, García-Ordás María Teresa
SALBIS Research Group, Department of Electric, Systems and Automatics Engineering, University of León, León, Spain.
SECOMUCI Research Group, Escuela de Ingenierías Industrial e Informática, Universidad de León, León, Spain.
JMIR Med Inform. 2022 Feb 24;10(2):e34492. doi: 10.2196/34492.
Eating disorders affect an increasing number of people. Social networks provide information that can help.
We aimed to find machine learning models capable of efficiently categorizing tweets about eating disorders domain.
We collected tweets related to eating disorders, for 3 consecutive months. After preprocessing, a subset of 2000 tweets was labeled: (1) messages written by people suffering from eating disorders or not, (2) messages promoting suffering from eating disorders or not, (3) informative messages or not, and (4) scientific or nonscientific messages. Traditional machine learning and deep learning models were used to classify tweets. We evaluated accuracy, F1 score, and computational time for each model.
A total of 1,058,957 tweets related to eating disorders were collected. were obtained in the 4 categorizations, with The bidirectional encoder representations from transformer-based models had the best score among the machine learning and deep learning techniques applied to the 4 categorization tasks (F1 scores 71.1%-86.4%).
Bidirectional encoder representations from transformer-based models have better performance, although their computational cost is significantly higher than those of traditional techniques, in classifying eating disorder-related tweets.
饮食失调影响着越来越多的人。社交网络提供的信息可能会有所帮助。
我们旨在找到能够有效对有关饮食失调领域的推文进行分类的机器学习模型。
我们连续3个月收集了与饮食失调相关的推文。经过预处理后,对2000条推文的子集进行了标注:(1)由饮食失调患者或非患者撰写的信息;(2)宣扬饮食失调或不宣扬饮食失调的信息;(3)是否为信息性信息;(4)是否为科学或非科学信息。使用传统机器学习和深度学习模型对推文进行分类。我们评估了每个模型的准确率、F1分数和计算时间。
总共收集了1058957条与饮食失调相关的推文。在4种分类中得到了[此处原文似乎缺失部分内容],基于Transformer的模型的双向编码器表征在应用于4种分类任务的机器学习和深度学习技术中得分最高(F1分数为71.1%-86.4%)。
在对与饮食失调相关的推文进行分类时,基于Transformer的模型的双向编码器表征具有更好的性能,尽管其计算成本明显高于传统技术。