Suppr超能文献

重复序列破坏染色质结构,并重新连接 X 连锁肢端巨大症中的 GPR101 增强子通讯。

Duplications disrupt chromatin architecture and rewire GPR101-enhancer communication in X-linked acrogigantism.

机构信息

Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013 Seville, Spain.

Department of Endocrinology, Centre Hospitalier Universitaire de Liège, University of Liège, Domaine Universitaire du Sart-Tilman, 4000 Liège, Belgium.

出版信息

Am J Hum Genet. 2022 Apr 7;109(4):553-570. doi: 10.1016/j.ajhg.2022.02.002. Epub 2022 Feb 23.

Abstract

X-linked acrogigantism (X-LAG) is the most severe form of pituitary gigantism and is characterized by aggressive growth hormone (GH)-secreting pituitary tumors that occur in early childhood. X-LAG is associated with chromosome Xq26.3 duplications (the X-LAG locus typically includes VGLL1, CD40LG, ARHGEF6, RBMX, and GPR101) that lead to massive pituitary tumoral expression of GPR101, a novel regulator of GH secretion. The mechanism by which the duplications lead to marked pituitary misexpression of GPR101 alone was previously unclear. Using Hi-C and 4C-seq, we characterized the normal chromatin structure at the X-LAG locus. We showed that GPR101 is located within a topologically associating domain (TAD) delineated by a tissue-invariant border that separates it from centromeric genes and regulatory sequences. Next, using 4C-seq with GPR101, RBMX, and VGLL1 viewpoints, we showed that the duplications in multiple X-LAG-affected individuals led to ectopic interactions that crossed the invariant TAD border, indicating the existence of a similar and consistent mechanism of neo-TAD formation in X-LAG. We then identified several pituitary active cis-regulatory elements (CREs) within the neo-TAD and demonstrated in vitro that one of them significantly enhanced reporter gene expression. At the same time, we showed that the GPR101 promoter permits the incorporation of new regulatory information. Our results indicate that X-LAG is a TADopathy of the endocrine system in which Xq26.3 duplications disrupt the local chromatin architecture forming a neo-TAD. Rewiring GPR101-enhancer interaction within the new regulatory unit is likely to cause the high levels of aberrant expression of GPR101 in pituitary tumors caused by X-LAG.

摘要

X 连锁肢端巨大症(X-LAG)是垂体巨大症中最严重的形式,其特征是在儿童早期发生侵袭性生长激素(GH)分泌性垂体肿瘤。X-LAG 与染色体 Xq26.3 重复(X-LAG 基因座通常包括 VGLL1、CD40LG、ARHGEF6、RBMX 和 GPR101)有关,这些重复导致 GPR101 在垂体肿瘤中大量表达,GPR101 是 GH 分泌的新型调节因子。以前不清楚重复如何导致 GPR101 在垂体中的表达明显异常。我们使用 Hi-C 和 4C-seq 来描述 X-LAG 基因座的正常染色质结构。我们表明,GPR101 位于由组织不变边界界定的拓扑关联结构域(TAD)内,该边界将其与着丝粒基因和调节序列分开。接下来,我们使用带有 GPR101、RBMX 和 VGLL1 观点的 4C-seq,表明多个 X-LAG 受影响个体中的重复导致异位相互作用跨越不变的 TAD 边界,表明在 X-LAG 中存在类似且一致的新 TAD 形成机制。然后,我们在新的 TAD 内鉴定了几个垂体活性顺式调控元件(CRE),并在体外证明其中一个显著增强了报告基因的表达。与此同时,我们表明 GPR101 启动子允许新的调控信息的整合。我们的结果表明,X-LAG 是内分泌系统的 TAD 病,其中 Xq26.3 重复破坏了形成新 TAD 的局部染色质结构。在新的调控单元内重新布线 GPR101 增强子相互作用可能导致 X-LAG 引起的垂体肿瘤中 GPR101 的异常高表达。

相似文献

1
Duplications disrupt chromatin architecture and rewire GPR101-enhancer communication in X-linked acrogigantism.
Am J Hum Genet. 2022 Apr 7;109(4):553-570. doi: 10.1016/j.ajhg.2022.02.002. Epub 2022 Feb 23.
3
Case report: Management of pediatric gigantism caused by the TADopathy, X-linked acrogigantism.
Front Endocrinol (Lausanne). 2024 Feb 28;15:1345363. doi: 10.3389/fendo.2024.1345363. eCollection 2024.
4
The Genetic Pathophysiology and Clinical Management of the TADopathy, X-Linked Acrogigantism.
Endocr Rev. 2024 Sep 12;45(5):737-754. doi: 10.1210/endrev/bnae014.
5
Germline or somatic GPR101 duplication leads to X-linked acrogigantism: a clinico-pathological and genetic study.
Acta Neuropathol Commun. 2016 Jun 1;4(1):56. doi: 10.1186/s40478-016-0328-1.
6
An orphan G-protein-coupled receptor causes human gigantism and/or acromegaly: Molecular biology and clinical correlations.
Best Pract Res Clin Endocrinol Metab. 2018 Apr;32(2):125-140. doi: 10.1016/j.beem.2018.02.004. Epub 2018 Mar 17.
7
The X-linked acrogigantism-associated gene gpr101 is a regulator of early embryonic development and growth in zebrafish.
Mol Cell Endocrinol. 2021 Jan 15;520:111091. doi: 10.1016/j.mce.2020.111091. Epub 2020 Nov 26.
8
Gigantism and acromegaly due to Xq26 microduplications and GPR101 mutation.
N Engl J Med. 2014 Dec 18;371(25):2363-74. doi: 10.1056/NEJMoa1408028. Epub 2014 Dec 3.
9
Gigantism: X-linked acrogigantism and GPR101 mutations.
Growth Horm IGF Res. 2016 Oct-Dec;30-31:64-69. doi: 10.1016/j.ghir.2016.09.007. Epub 2016 Sep 29.
10
X-linked acrogigantism syndrome: clinical profile and therapeutic responses.
Endocr Relat Cancer. 2015 Jun;22(3):353-67. doi: 10.1530/ERC-15-0038. Epub 2015 Feb 24.

引用本文的文献

4
Structural variants in the 3D genome as drivers of disease.
Nat Rev Genet. 2025 Jun 30. doi: 10.1038/s41576-025-00862-x.
5
Comparing models and experimental structures of the GPR101 receptor: Artificial intelligence yields highly accurate models.
J Mol Graph Model. 2025 Nov;140:109103. doi: 10.1016/j.jmgm.2025.109103. Epub 2025 Jun 3.
6
Progress report on multiple endocrine neoplasia type 1.
Fam Cancer. 2025 Jan 18;24(1):15. doi: 10.1007/s10689-025-00440-4.
7
Secondary diabetes mellitus in acromegaly: Case report and literature review.
Medicine (Baltimore). 2024 Sep 27;103(39):e39847. doi: 10.1097/MD.0000000000039847.
9
Three-dimensional chromatin landscapes in somatotroph tumour.
Clin Transl Med. 2024 May;14(5):e1682. doi: 10.1002/ctm2.1682.
10
Case report: Management of pediatric gigantism caused by the TADopathy, X-linked acrogigantism.
Front Endocrinol (Lausanne). 2024 Feb 28;15:1345363. doi: 10.3389/fendo.2024.1345363. eCollection 2024.

本文引用的文献

1
Topological isolation of developmental regulators in mammalian genomes.
Nat Commun. 2021 Aug 12;12(1):4897. doi: 10.1038/s41467-021-24951-7.
2
Induction of a chromatin boundary in vivo upon insertion of a TAD border.
PLoS Genet. 2021 Jul 22;17(7):e1009691. doi: 10.1371/journal.pgen.1009691. eCollection 2021 Jul.
4
Multi-omic profiling of pituitary thyrotropic cells and progenitors.
BMC Biol. 2021 Apr 15;19(1):76. doi: 10.1186/s12915-021-01009-0.
6
José Luis Gómez-Skarmeta (1966-2020).
Development. 2020 Dec 3;147(22):dev197996. doi: 10.1242/dev.197996.
7
The X-linked acrogigantism-associated gene gpr101 is a regulator of early embryonic development and growth in zebrafish.
Mol Cell Endocrinol. 2021 Jan 15;520:111091. doi: 10.1016/j.mce.2020.111091. Epub 2020 Nov 26.
8
Structural Variants Create New Topological-Associated Domains and Ectopic Retinal Enhancer-Gene Contact in Dominant Retinitis Pigmentosa.
Am J Hum Genet. 2020 Nov 5;107(5):802-814. doi: 10.1016/j.ajhg.2020.09.002. Epub 2020 Oct 5.
10
The GTEx Consortium atlas of genetic regulatory effects across human tissues.
Science. 2020 Sep 11;369(6509):1318-1330. doi: 10.1126/science.aaz1776.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验