Suppr超能文献

运动后马匹热成像高级图像处理中图像纹理分析与颜色模型的选择

Selection of Image Texture Analysis and Color Model in the Advanced Image Processing of Thermal Images of Horses following Exercise.

作者信息

Domino Małgorzata, Borowska Marta, Kozłowska Natalia, Trojakowska Anna, Zdrojkowski Łukasz, Jasiński Tomasz, Smyth Graham, Maśko Małgorzata

机构信息

Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland.

Institute of Biomedical Engineering, Faculty of Mechanical Engineering, Białystok University of Technology, 15-351 Bialystok, Poland.

出版信息

Animals (Basel). 2022 Feb 12;12(4):444. doi: 10.3390/ani12040444.

Abstract

As the detection of horse state after exercise is constantly developing, a link between blood biomarkers and infrared thermography (IRT) was investigated using advanced image texture analysis. The aim of the study was to determine which combinations of RGB (red-green-blue), YUI (brightness-UV-components), YIQ (brightness-IQ-components), and HSB (hue-saturation-brightness) color models, components, and texture features are related to the blood biomarkers of exercise effect. Twelve Polish warmblood horses underwent standardized exercise tests for six consecutive days. Both thermal images and blood samples were collected before and after each test. All 144 obtained IRT images were analyzed independently for 12 color components in four color models using eight texture-feature approaches, including 88 features. The similarity between blood biomarker levels and texture features was determined using linear regression models. In the horses' thoracolumbar region, 12 texture features (nine in RGB, one in YIQ, and two in HSB) were related to blood biomarkers. Variance, sum of squares, and sum of variance in the RGB were highly repeatable between image processing protocols. The combination of two approaches of image texture (histogram statistics and gray-level co-occurrence matrix) and two color models (RGB, YIQ), should be considered in the application of digital image processing of equine IRT.

摘要

随着运动后马匹状态检测技术的不断发展,利用先进的图像纹理分析方法研究了血液生物标志物与红外热成像(IRT)之间的联系。本研究的目的是确定RGB(红-绿-蓝)、YUI(亮度-紫外线分量)、YIQ(亮度-IQ分量)和HSB(色调-饱和度-亮度)颜色模型、分量和纹理特征的哪些组合与运动效果的血液生物标志物相关。12匹波兰温血马连续6天接受标准化运动测试。每次测试前后均采集热图像和血样。使用包括88个特征的8种纹理特征方法,对所有144张获得的IRT图像独立分析4种颜色模型中的12种颜色分量。使用线性回归模型确定血液生物标志物水平与纹理特征之间的相似性。在马的胸腰椎区域,12种纹理特征(RGB中的9种、YIQ中的1种和HSB中的2种)与血液生物标志物相关。RGB中的方差、平方和及方差和在图像处理协议之间具有高度可重复性。在马IRT的数字图像处理应用中,应考虑图像纹理的两种方法(直方图统计和灰度共生矩阵)和两种颜色模型(RGB、YIQ)的组合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4be0/8868218/cd96e9a5a163/animals-12-00444-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验