Suppr超能文献

多组学分析揭示G72/G30转基因小鼠海马体中的髓磷脂、突触前和烟酸盐改变。

Multi-Omics Analysis Reveals Myelin, Presynaptic and Nicotinate Alterations in the Hippocampus of G72/G30 Transgenic Mice.

作者信息

Filiou Michaela D, Teplytska Larysa, Nussbaumer Markus, Otte David-M, Zimmer Andreas, Turck Christoph W

机构信息

Proteomics and Biomarkers, Max Planck Institute of Psychiatry, 80804 Munich, Germany.

Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece.

出版信息

J Pers Med. 2022 Feb 9;12(2):244. doi: 10.3390/jpm12020244.

Abstract

The primate-specific G72/G30 gene locus has been associated with major psychiatric disorders, such as schizophrenia and bipolar disorder. We have previously generated transgenic mice which carry the G72/G30 locus and express the longest G72 splice variant (LG72) protein encoded by this locus with schizophrenia-related symptoms. Here, we used a multi-omics approach, including quantitative proteomics and metabolomics to investigate molecular alterations in the hippocampus of G72/G30 transgenic (G72Tg) mice. Our proteomics analysis revealed decreased expression of myelin-related proteins and NAD-dependent protein deacetylase sirtuin-2 (Sirt2) as well as increased expression of the scaffolding presynaptic proteins bassoon (Bsn) and piccolo (Pclo) and the cytoskeletal protein plectin (Plec1) in G72Tg compared to wild-type (WT) mice. Metabolomics analysis indicated decreased levels of nicotinate in G72Tg compared to WT hippocampi. Decreased hippocampal protein expression for selected proteins, namely myelin oligodentrocyte glycoprotein (Mog), Cldn11 and myelin proteolipid protein (Plp), was confirmed with Western blot in a larger population of G72Tg and WT mice. The identified molecular pathway alterations shed light on the hippocampal function of LG72 protein in the context of neuropsychiatric phenotypes.

摘要

灵长类动物特有的G72/G30基因座与精神分裂症和双相情感障碍等主要精神疾病有关。我们之前培育了携带G72/G30基因座并表达该基因座编码的最长G72剪接变体(LG72)蛋白且具有精神分裂症相关症状的转基因小鼠。在此,我们采用了包括定量蛋白质组学和代谢组学在内的多组学方法,来研究G72/G30转基因(G72Tg)小鼠海马体中的分子变化。我们的蛋白质组学分析显示,与野生型(WT)小鼠相比,G72Tg小鼠中髓鞘相关蛋白和NAD依赖性蛋白脱乙酰酶沉默调节蛋白2(Sirt2)的表达降低,而突触前支架蛋白巴松管(Bsn)和短笛(Pclo)以及细胞骨架蛋白网蛋白(Plec1)的表达增加。代谢组学分析表明,与WT海马体相比,G72Tg小鼠中烟酸水平降低。在更多的G72Tg和WT小鼠群体中,通过蛋白质印迹法证实了所选蛋白质(即髓鞘少突胶质细胞糖蛋白(Mog)、紧密连接蛋白11(Cldn11)和髓鞘蛋白脂蛋白(Plp))在海马体中的蛋白质表达降低。所确定的分子通路改变为神经精神表型背景下LG72蛋白的海马体功能提供了线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9534/8878587/c0699a948fd4/jpm-12-00244-g001.jpg

相似文献

2
Myelination and oxidative stress alterations in the cerebellum of the G72/G30 transgenic schizophrenia mouse model.
J Psychiatr Res. 2012 Oct;46(10):1359-65. doi: 10.1016/j.jpsychires.2012.07.004. Epub 2012 Aug 9.
3
Behavioral changes in G72/G30 transgenic mice.
Eur Neuropsychopharmacol. 2009 May;19(5):339-48. doi: 10.1016/j.euroneuro.2008.12.009. Epub 2009 Feb 1.
4
Involvement of the primate specific gene G72 in schizophrenia: From genetic studies to pathomechanisms.
Neurosci Biobehav Rev. 2013 Dec;37(10 Pt 1):2410-7. doi: 10.1016/j.neubiorev.2012.10.009. Epub 2012 Oct 22.
5
Expression of the G72/G30 gene in transgenic mice induces behavioral changes.
Mol Psychiatry. 2014 Feb;19(2):175-83. doi: 10.1038/mp.2012.185. Epub 2013 Jan 22.
6
Chronic nicotine improves short-term memory selectively in a G72 mouse model of schizophrenia.
Br J Pharmacol. 2014 Apr;171(7):1758-71. doi: 10.1111/bph.12578.
7
G72/G30 in schizophrenia and bipolar disorder: review and meta-analysis.
Biol Psychiatry. 2006 Jul 15;60(2):106-14. doi: 10.1016/j.biopsych.2006.01.019. Epub 2006 Apr 11.
8
N-acetyl cysteine treatment rescues cognitive deficits induced by mitochondrial dysfunction in G72/G30 transgenic mice.
Neuropsychopharmacology. 2011 Oct;36(11):2233-43. doi: 10.1038/npp.2011.109. Epub 2011 Jun 29.
9
G72 primate-specific gene: a still enigmatic element in psychiatric disorders.
Cell Mol Life Sci. 2016 May;73(10):2029-39. doi: 10.1007/s00018-016-2165-6. Epub 2016 Feb 25.
10
Lipidomics reveals dysfunctional glycosynapses in schizophrenia and the G72/G30 transgenic mouse.
Schizophr Res. 2014 Nov;159(2-3):365-9. doi: 10.1016/j.schres.2014.08.029. Epub 2014 Sep 26.

引用本文的文献

2
Deciphering the Metabolome under Stress: Insights from Rodent Models.
Curr Neuropharmacol. 2024;22(5):884-903. doi: 10.2174/1570159X21666230713094843.
3
Biochemical Properties and Physiological Functions of pLG72: Twenty Years of Investigations.
Biomolecules. 2022 Jun 20;12(6):858. doi: 10.3390/biom12060858.

本文引用的文献

2
Exploring the metabolomic profile of cerebellum after exposure to acute stress.
Stress. 2021 Nov;24(6):952-964. doi: 10.1080/10253890.2021.1973997. Epub 2021 Sep 23.
5
MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights.
Nucleic Acids Res. 2021 Jul 2;49(W1):W388-W396. doi: 10.1093/nar/gkab382.
7
8
Cannabinol in the spotlight: Toxicometabolomic study and behavioral analysis of zebrafish embryos exposed to the unknown cannabinoid.
Chemosphere. 2020 Aug;252:126417. doi: 10.1016/j.chemosphere.2020.126417. Epub 2020 Mar 12.
9
Unraveling the Serum Metabolomic Profile of Post-partum Depression.
Front Neurosci. 2019 Aug 23;13:833. doi: 10.3389/fnins.2019.00833. eCollection 2019.
10
Anxiety and Brain Mitochondria: A Bidirectional Crosstalk.
Trends Neurosci. 2019 Sep;42(9):573-588. doi: 10.1016/j.tins.2019.07.002. Epub 2019 Jul 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验