Suppr超能文献

一种基于衍生纤维素的复合多孔膜,用于瞬态锂离子电池中的瞬态凝胶电解质。

A Composite Porous Membrane Based on Derived Cellulose for Transient Gel Electrolyte in Transient Lithium-Ion Batteries.

作者信息

Chen Yuanfen, Zhang Lanbin, Lin Lin, You Hui

机构信息

School of Mechanical Engineering, Guangxi University, Nanning 530004, China.

出版信息

Materials (Basel). 2022 Feb 20;15(4):1584. doi: 10.3390/ma15041584.

Abstract

The transient lithium-ion battery is a potential candidate as an integrated energy storage unit in transient electronics. In this study, a mechanically robust, transient, and high-performance composite porous membrane for a transient gel electrolyte in transient lithium-ion batteries is studied and reported. By introducing a unique and controllable circular skeleton of methylcellulose to the carboxymethyl cellulose-based membrane, the elastic modulus and tensile strength of the composite porous membrane (CPM) are greatly improved, while maintaining its micropores structure and fast transiency. Results show that CPM with 5% methylcellulose has the best overall performance. The elastic modulus, tensile strength, porosity, and contact angle of the optimized CPM are 335.18 MPa, 9.73 MPa, 62.26%, and 21.22°, respectively. The water-triggered transient time for CPM is less than 20 min. The ionic conductivity and bulk resistance of the CPM gel electrolyte are 0.54 mS cm and 4.45 Ω, respectively. The obtained results suggest that this transient high-performance CPM has great potential applications as a transient power source in transient electronics.

摘要

瞬态锂离子电池作为瞬态电子器件中的集成储能单元具有潜在的应用前景。在本研究中,对一种用于瞬态锂离子电池中瞬态凝胶电解质的机械坚固、瞬态且高性能的复合多孔膜进行了研究并予以报道。通过将甲基纤维素独特且可控的圆形骨架引入到基于羧甲基纤维素的膜中,复合多孔膜(CPM)的弹性模量和拉伸强度得到了极大提高,同时保持了其微孔结构和快速瞬态特性。结果表明,含有5%甲基纤维素的CPM具有最佳的综合性能。优化后的CPM的弹性模量、拉伸强度、孔隙率和接触角分别为335.18 MPa、9.73 MPa、62.26%和21.22°。CPM的水触发瞬态时间小于20分钟。CPM凝胶电解质的离子电导率和体电阻分别为0.54 mS cm和4.45 Ω。所得结果表明,这种瞬态高性能CPM作为瞬态电子器件中的瞬态电源具有巨大的潜在应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e676/8877982/8ae83776db20/materials-15-01584-g0A1.jpg

相似文献

2
High-Strength Internal Cross-Linking Bacterial Cellulose-Network-Based Gel Polymer Electrolyte for Dendrite-Suppressing and High-Rate Lithium Batteries.
ACS Appl Mater Interfaces. 2018 May 30;10(21):17809-17819. doi: 10.1021/acsami.8b00034. Epub 2018 May 15.
4
Porous Composite Gel Polymer Electrolyte with Interfacial Transport Pathways for Flexible Quasi Solid Lithium-Ion Batteries.
ACS Appl Mater Interfaces. 2021 May 26;13(20):23743-23750. doi: 10.1021/acsami.1c04113. Epub 2021 May 17.
6
Carboxymethyl Cellulose Gel Electrolyte Based on Hydrolyzed Keratin Modified for Dendrite-Free Zinc-Ion Batteries.
Langmuir. 2024 Oct 8;40(40):21032-21040. doi: 10.1021/acs.langmuir.4c02308. Epub 2024 Sep 24.
7
A flexible Cellulose/Methylcellulose gel polymer electrolyte endowing superior Li conducting property for lithium ion battery.
Carbohydr Polym. 2020 Oct 15;246:116622. doi: 10.1016/j.carbpol.2020.116622. Epub 2020 Jun 12.
8
Porous cellulose diacetate-SiO2 composite coating on polyethylene separator for high-performance lithium-ion battery.
Carbohydr Polym. 2016 Aug 20;147:517-524. doi: 10.1016/j.carbpol.2016.04.046. Epub 2016 Apr 12.
9
Robust Succinonitrile-Based Gel Polymer Electrolyte for Lithium-Ion Batteries Withstanding Mechanical Folding and High Temperature.
ACS Appl Mater Interfaces. 2018 Aug 1;10(30):25384-25392. doi: 10.1021/acsami.8b06800. Epub 2018 Jul 20.
10
A degradable membrane based on lignin-containing cellulose for high-energy lithium-ion batteries.
Int J Biol Macromol. 2022 Jul 31;213:690-698. doi: 10.1016/j.ijbiomac.2022.06.004. Epub 2022 Jun 6.

引用本文的文献

1

本文引用的文献

1
Self-deployable current sources fabricated from edible materials.
J Mater Chem B. 2013 Aug 21;1(31):3781-3788. doi: 10.1039/c3tb20183j. Epub 2013 Mar 22.
2
Construction of flexible electrodes based on ternary polypyrrole@cobalt oxyhydroxide/cellulose fiber composite for supercapacitor.
Carbohydr Polym. 2020 Feb 1;229:115455. doi: 10.1016/j.carbpol.2019.115455. Epub 2019 Oct 12.
3
A Fully Biodegradable Battery for Self-Powered Transient Implants.
Small. 2018 Jul;14(28):e1800994. doi: 10.1002/smll.201800994. Epub 2018 May 27.
4
Biodegradable Polymeric Materials in Degradable Electronic Devices.
ACS Cent Sci. 2018 Mar 28;4(3):337-348. doi: 10.1021/acscentsci.7b00595. Epub 2018 Feb 6.
5
Facile Synthesis of Unique Cellulose Triacetate Based Flexible and High Performance Gel Polymer Electrolyte for Lithium Ion Batteries.
ACS Appl Mater Interfaces. 2017 Oct 11;9(40):34773-34782. doi: 10.1021/acsami.7b07020. Epub 2017 Sep 26.
6
Transient Rechargeable Batteries Triggered by Cascade Reactions.
Nano Lett. 2015 Jul 8;15(7):4664-71. doi: 10.1021/acs.nanolett.5b01451. Epub 2015 Jun 26.
7
Materials, designs, and operational characteristics for fully biodegradable primary batteries.
Adv Mater. 2014 Jun 18;26(23):3879-84. doi: 10.1002/adma.201306304. Epub 2014 Mar 20.
8
Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices.
Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):20912-7. doi: 10.1073/pnas.1314345110. Epub 2013 Dec 9.
9
Battery separators.
Chem Rev. 2004 Oct;104(10):4419-62. doi: 10.1021/cr020738u.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验