Suppr超能文献

从PubMed中自动推荐研究关键词,这些关键词揭示与生物标志物代谢物相关的分子机制。

Automated Recommendation of Research Keywords from PubMed That Suggest the Molecular Mechanism Associated with Biomarker Metabolites.

作者信息

Kanazawa Shinji, Shimizu Satoshi, Kajihara Shigeki, Mukai Norio, Iida Junko, Matsuda Fumio

机构信息

Shimadzu Corporation, Kyoto 604-8511, Japan.

Osaka University Shimadzu Omics Innovation Research Laboratories, Osaka University, Osaka 565-0871, Japan.

出版信息

Metabolites. 2022 Feb 1;12(2):133. doi: 10.3390/metabo12020133.

Abstract

Metabolomics can help identify candidate biomarker metabolites whose levels are altered in response to disease development or drug administration. However, assessment of the underlying molecular mechanism is challenging considering it depends on the researcher's knowledge. This study reports a novel method for the automated recommendation of keywords known in the literature that may be overlooked by researchers. The proposed method aided in the identification of Medical Subject Headings (MeSH) terms in PubMed using MeSH co-occurrence data. The intended users are biocurators who have identified specific biomarker metabolites from a metabolomics study and would like to identify literature-reported molecular mechanisms that are associated with both the metabolite and their research area of interest. The proposed method finds MeSH terms that co-occur with a MeSH term of the candidate biomarker metabolite as well as a MeSH term of a researcher's known keyword, such as the name of a disease. The connectivity score was determined using association analysis. Pilot analyses demonstrated that, while the biological significance of the obtained MeSH terms could not be guaranteed, the developed method can be useful for finding keywords to further investigate molecular mechanisms in association with candidate biomarker molecules.

摘要

代谢组学有助于识别候选生物标志物代谢物,其水平会随着疾病发展或药物施用而改变。然而,鉴于其依赖于研究人员的知识,评估潜在的分子机制具有挑战性。本研究报告了一种新颖的方法,用于自动推荐文献中可能被研究人员忽视的关键词。所提出的方法利用医学主题词(MeSH)共现数据辅助在PubMed中识别MeSH术语。目标用户是生物编目员,他们已从代谢组学研究中识别出特定的生物标志物代谢物,并希望识别文献报道的与该代谢物及其感兴趣的研究领域相关的分子机制。所提出的方法找到与候选生物标志物代谢物的MeSH术语以及研究人员已知关键词(如疾病名称)的MeSH术语共同出现的MeSH术语。使用关联分析确定连通性得分。初步分析表明,虽然无法保证所获得的MeSH术语的生物学意义,但所开发的方法可用于找到关键词,以进一步研究与候选生物标志物分子相关的分子机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4a9/8875447/445f99c89524/metabolites-12-00133-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验