Alaloul Mohammed, Khurgin Jacob B
Opt Express. 2022 Jan 17;30(2):1950-1966. doi: 10.1364/OE.441710.
Graphene has emerged as an ultrafast photonic material for on-chip all-optical switching applications. However, its atomic thickness limits its interaction with guided optical modes, resulting in a high switching energy per bit. Herein, we propose a novel technique to electrically control the switching energy of an all-optical graphene switch on a silicon nitride waveguide. Using this technique, we theoretically demonstrate a 120 µm long all-optical graphene switch with an 8.9 dB extinction ratio, 2.4 dB insertion loss, a switching time of <100 fs, a fall time of <5 ps, and a 235 fJ switching energy at 2.5 V bias, where the applied voltage reduces the switching energy by ∼16×. This technique paves the way for the emergence of ultra-efficient all-optical graphene switches that will meet the energy demands of next-generation photonic computing systems, and it is a promising alternative to lossy plasmon-enhanced devices.
石墨烯已成为用于片上全光开关应用的超快光子材料。然而,其原子厚度限制了它与导光模式的相互作用,导致每位的开关能量较高。在此,我们提出一种新技术,用于电控制氮化硅波导上全光石墨烯开关的开关能量。使用该技术,我们从理论上证明了一个120 µm长的全光石墨烯开关,其消光比为8.9 dB,插入损耗为2.4 dB,开关时间<100 fs,下降时间<5 ps,在2.5 V偏压下的开关能量为235 fJ,其中施加的电压使开关能量降低了约16倍。该技术为超高效全光石墨烯开关的出现铺平了道路,这种开关将满足下一代光子计算系统的能量需求,并且它是有损耗的等离子体增强器件的一种有前景的替代方案。