Suppr超能文献

Parity-time symmetry in monolithically integrated graphene-assisted microresonators.

作者信息

Wen Hao, Ren Linhao, Shi Lei, Zhang Xinliang

出版信息

Opt Express. 2022 Jan 17;30(2):2112-2121. doi: 10.1364/OE.448371.

Abstract

Recently, optical systems with parity-time (PT) symmetry have attracted considerable attention due to its remarkable properties and promising applications. However, these systems usually require separate photonic devices or active semiconductor materials. Here, we investigate PT symmetry and exceptional points (EPs) in monolithically integrated graphene-assisted coupled microresonators. Raman effect and graphene cladding are utilized to introduce the balanced gain and loss. We show that PT-symmetry breaking and EPs can be achieved by changing the pump power and the chemical potential. In addition, the intracavity field intensities experience suppression and revival as the graphene-induced loss increases. Due to the unique distribution of optical field, tunable nonreciprocal light transmission is theoretically demonstrated when introducing the gain saturation nonlinearity. The maximum isolation ratio can reach 26 dB through optimizing the relevant parameters. Our proposed scheme is monolithically integrated, CMOS compatible, and exhibits remarkable properties for microscale light field manipulation. These superior features make our scheme has promising applications in optical communication, computing and sensing.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验