Guo Zhen, Levitan Abraham, Barbastathis George, Comin Riccardo
Opt Express. 2022 Jan 17;30(2):2247-2264. doi: 10.1364/OE.445498.
Randomized probe imaging (RPI) is a single-frame diffractive imaging method that uses highly randomized light to reconstruct the spatial features of a scattering object. The reconstruction process, known as phase retrieval, aims to recover a unique solution for the object without measuring the far-field phase information. Typically, reconstruction is done via time-consuming iterative algorithms. In this work, we propose a fast and efficient deep learning based method to reconstruct phase objects from RPI data. The method, which we call deep k-learning, applies the physical propagation operator to generate an approximation of the object as an input to the neural network. This way, the network no longer needs to parametrize the far-field diffraction physics, dramatically improving the results. Deep k-learning is shown to be computationally efficient and robust to Poisson noise. The advantages provided by our method may enable the analysis of far larger datasets in photon starved conditions, with important applications to the study of dynamic phenomena in physical science and biological engineering.
随机探针成像(RPI)是一种单帧衍射成像方法,它使用高度随机的光来重建散射物体的空间特征。重建过程,即所谓的相位恢复,旨在在不测量远场相位信息的情况下为物体恢复唯一解。通常,重建是通过耗时的迭代算法完成的。在这项工作中,我们提出了一种基于深度学习的快速高效方法,用于从RPI数据重建相位物体。我们将该方法称为深度k学习,它应用物理传播算子生成物体的近似值作为神经网络的输入。通过这种方式,网络不再需要对远场衍射物理进行参数化,从而显著改善了结果。实验表明,深度k学习计算效率高,对泊松噪声具有鲁棒性。我们的方法所提供的优势可能使我们能够在光子匮乏的条件下分析大得多的数据集,这对于物理科学和生物工程中的动态现象研究具有重要应用价值。