Sarkar Sumit, Piccon Raphaël, Merlet Sébastien, Pereira Dos Santos Franck
Opt Express. 2022 Jan 31;30(3):3358-3366. doi: 10.1364/OE.447073.
We report a compact and robust architecture of a versatile laser system that allows the implementation of several advanced atom interferometry techniques, such as Bragg diffraction, Bloch oscillations, or single and double Raman diffraction. A low noise, frequency tunable fiber-laser (λ = ~1560 nm) serves as the seed. A couple of fiber-coupled amplifiers followed by two fibered second-harmonic generators produce a pair of phase-locked, frequency-controllable laser beams at 780 nm. Manipulating frequencies of individual laser beams at λ = 1560 nm before the amplifiers, facilitates achieving a maximum relative detuning of ± 20 MHz, while maintaining a constant output power. We present the scheme to implement Raman spectroscopy using our laser system and discuss its advantages. Finally, the overall performance of the laser setup has been evaluated by realizing interferometers in copropagating Ramsey-Raman and counterpropagating Bragg configuration.
我们报告了一种通用激光系统的紧凑且稳健的架构,该架构允许实现多种先进的原子干涉测量技术,如布拉格衍射、布洛赫振荡或单双拉曼衍射。一个低噪声、频率可调的光纤激光器(λ = ~1560 nm)作为种子源。几个光纤耦合放大器,接着是两个光纤二次谐波发生器,产生一对锁相、频率可控的780 nm激光束。在放大器之前操纵λ = 1560 nm的各激光束频率,有助于在保持恒定输出功率的同时实现最大±20 MHz的相对失谐。我们展示了使用我们的激光系统实现拉曼光谱的方案并讨论了其优势。最后,通过在同向传播的拉姆齐 - 拉曼和反向传播的布拉格配置中实现干涉仪,对激光装置的整体性能进行了评估。